[en] Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusions. Many PD risk factors are known, but those affecting disease progression are not. Lifestyle and microbial dysbiosis are candidates in this context. Diet-driven gut dysbiosis and reduced barrier function may increase exposure of enteric neurons to toxins. Here, we study whether fiber deprivation and exposure to bacterial curli, a protein cross-seeding with αSyn, individually or together, exacerbate disease in the enteric and central nervous systems of a transgenic PD mouse model. We analyze the gut microbiome, motor behavior, and gastrointestinal and brain pathologies. We find that diet and bacterial curli alter the microbiome and exacerbate motor performance, as well as intestinal and brain pathologies, but to different extents. Our results shed important insights on how diet and microbiome-borne insults modulate PD progression via the gut-brain axis and have implications for lifestyle management of PD.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group)
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
SCHMIT, Kristopher ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
GARCIA, Pierre ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuropathology
SCIORTINO, Alessia ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Neuropathology > Team Michel MITTELBRONN
AHO, Velma ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
Pardo Rodriguez, Beatriz; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg, Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
THOMAS, Melanie ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
GERARDY, Jean-Jacques ; University of Luxembourg ; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg, National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
Bastero Acha, Irati; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg, Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
HALDER, Rashi ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Sequencing Platform
CIALINI, Camille ; University of Luxembourg ; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
HEURTAUX, Tony ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Ostahi, Irina; National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
BUSI, Susheel Bhanu ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
Grandmougin, Léa; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
LOWNDES, Tuesday ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Singh, Yogesh; Institute for Medical Genetics and Applied Genomics, Hospital University Tubingen, 72076 Tubingen, Germany
Martens, Eric C; Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
MITTELBRONN, Michel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuropathology
BUTTINI, Manuel ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuropathology
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
H2020 - 863664 - ExpoBiome - Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and disease
FnR Project :
DTU PRIDE17/12244779/PARK-QC - PEARL P16/BM/11192868 -
Name of the research project :
Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and disease
Funders :
Jean Think Foundation Union Européenne
Funding text :
This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 863664). The following people were supported by the Luxembourg National Research Fund (FNR): K.J.S. (fellowship AFR 12515776), A.S. (DTU PRIDE17/12244779/PARK-QC), and M.M. (PEARL P16/BM/11192868). The authors thank the Jean Think Foundation (Luxembourg) for support, Wagner Zago (Prothena) for the 11A5 antibody, Matt Chapman (University of Michigan) for the E. coli strains, Luc Buee (University of Lille) for hTau mice, Lennart Mucke (Gladstone Institutes) for J20-hAPP mouse tissues, and the Animal Facility staff at the University of Luxembourg for help. K.J.S. M.B. E.C.M. and P.W. designed the study. K.J.S. P.G. A.S. B.P.R. M.H.T. J.-J.G. I.B.A. C.C. L.G. T.L. and T.H. did the experiments. R.H. performed the 16S rRNA amplicon sequencing. V.T.E.A. analyzed the 16S rRNA gene amplicon sequencing data. K.J.S. A.S. V.T.E.A. P.G. I.O. S.B.B. Y.S. M.M. M.B. and P.W. analyzed and interpreted the data. K.J.S. drafted the paper. M.B. edited the paper. All authors read and approved the final manuscript. The authors declare no competing interests. We support inclusive, diverse, and equitable conduct of research.This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 863664 ). The following people were supported by the Luxembourg National Research Fund (FNR): K.J.S. (fellowship AFR 12515776 ), A.S. ( DTU PRIDE17/12244779/PARK-QC ), and M.M. ( PEARL P16/BM/11192868 ). The authors thank the Jean Think Foundation (Luxembourg) for support, Wagner Zago (Prothena) for the 11A5 antibody, Matt Chapman (University of Michigan) for the E. coli strains, Luc Buee (University of Lille) for hTau mice, Lennart Mucke (Gladstone Institutes) for J20-hAPP mouse tissues, and the Animal Facility staff at the University of Luxembourg for help.
Commentary :
This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no. 863664). The following people were supported by the
Luxembourg National Research Fund (FNR): K.J.S. (fellowship AFR
12515776), A.S. (DTU PRIDE17/12244779/PARK-QC), and M.M. (PEARL
P16/BM/11192868). The authors thank the Jean Think Foundation
(Luxembourg) for support, Wagner Zago (Prothena) for the 11A5 antibody,
Matt Chapman (University of Michigan) for the E. coli strains, Luc Buee (University of Lille) for hTau mice, Lennart Mucke (Gladstone Institutes) for J20-hAPP
mouse tissues, and the Animal Facility staff at the University of Luxembourg for
helpK.J.S., M.B., E.C.M., and P.W. designed the study. K.J.S., P.G., A.S., B.P.R.,
M.H.T., J.-J.G., I.B.A., C.C., L.G., T.L., and T.H. did the experiments. R.H. performed the 16S rRNA amplicon sequencing. V.T.E.A. analyzed the 16S rRNA
gene amplicon sequencing data. K.J.S., A.S., V.T.E.A., P.G., I.O., S.B.B.,
Y.S., M.M., M.B., and P.W. analyzed and interpreted the data. K.J.S. drafted
the paper. M.B. edited the paper. All authors read and approved the final
manuscript.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Al-Maskari, F. LIFESTYLE DISEASES: An Economic Burden on the Health Services. United Nations. https://www.un.org/en/chronicle/article/lifestyle-diseases-economic-burden-health-services.
National Research Council (US) Institute of Medicine (US) Woolf, S.H., Aron, L., Physical and Social Environmental Factors. 2013, National Academies Press (US).
GBD 2016 Parkinson's Disease Collaborators Elbaz, A., Nichols, E., Abbasi, N., Abd-Allah, F., Abdelalim, A., Adsuar, J.C., Ansha, M.G., Brayne, C., Choi, J.-Y.J., et al. Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17 (2018), 939–953, 10.1016/S1474-4422(18)30295-3.
Yang, W., Hamilton, J.L., Kopil, C., Beck, J.C., Tanner, C.M., Albin, R.L., Ray Dorsey, E., Dahodwala, N., Cintina, I., Hogan, P., Thompson, T., Current and projected future economic burden of Parkinson's disease in the. NPJ Parkinsons Dis. 6 (2020), 15–19, 10.1038/s41531-020-0117-1.
Shameem, A., Muliyar, S., Thankachan, R.P., Kalliath, J.T., Mangalath, U., Mangalath, S., Study to evaluate the Efficacy of Resin-modified Glass lonomer Cement Liner as a Direct Pulp Capping Material. J. Contemp. Dent. Pract. 19 (2018), 1065–1071.
Marras, C., Canning, C.G., Goldman, S.M., Environment, lifestyle, and Parkinson's disease: Implications for prevention in the next decade. Mov. Disord. 34 (2019), 801–811, 10.1002/mds.27720.
Nag, N., Jelinek, G.A., More Research Is Needed on Lifestyle Behaviors That Influence Progression of Parkinson's Disease. Front. Neurol., 10, 2019, 452.
Maraki, M.I., Yannakoulia, M., Stamelou, M., Stefanis, L., Xiromerisiou, G., Kosmidis, M.H., Dardiotis, E., Hadjigeorgiou, G.M., Sakka, P., Anastasiou, C.A., et al. Mediterranean diet adherence is related to reduced probability of prodromal Parkinson's disease. Mov. Disord. 34 (2019), 48–57, 10.1002/mds.27489.
Hirschberg, S., Gisevius, B., Duscha, A., Haghikia, A., Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. Int. J. Mol. Sci., 20, 2019, 3109, 10.3390/ijms20123109.
Martínez Leo, E.E., Segura Campos, M.R., Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition, 71, 2020, 110609, 10.1016/j.nut.2019.110609.
Mischley, L.K., Lau, R.C., Bennett, R.D., Role of Diet and Nutritional Supplements in Parkinson's Disease Progression. Oxid. Med. Cell. Longev., 2017, 2017, 6405278, 10.1155/2017/6405278.
Rampelli, S., Schnorr, S.L., Consolandi, C., Turroni, S., Severgnini, M., Peano, C., Brigidi, P., Crittenden, A.N., Henry, A.G., Candela, M., Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Curr. Biol. 25 (2015), 1682–1693, 10.1016/j.cub.2015.04.055.
Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., Muller, A., et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167 (2016), 1339–1353.e21, 10.1016/j.cell.2016.10.043.
Hasani, A., Ebrahimzadeh, S., Hemmati, F., Khabbaz, A., Hasani, A., Gholizadeh, P., The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J. Med. Microbiol., 70, 2021, 10.1099/jmm.0.001435.
Rosario, D., Bidkhori, G., Lee, S., Bedarf, J., Hildebrand, F., Le Chatelier, E., Uhlen, M., Ehrlich, S.D., Proctor, G., Wüllner, U., et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson's disease. Cell Rep., 34, 2021, 108807, 10.1016/j.celrep.2021.108807.
Nerius, M., Doblhammer, G., Tamgüney, G., GI infections are associated with an increased risk of Parkinson's disease. Gut 69 (2020), 1154–1156, 10.1136/gutjnl-2019-318822.
Miller, A.L., Bessho, S., Grando, K., Tükel, Ç., Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front. Immunol., 12, 2021, 638867, 10.3389/fimmu.2021.638867.
Johansson, M.E.V., Larsson, J.M.H., Hansson, G.C., The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl. Acad. Sci. USA 108 (2011), 4659–4665, 10.1073/pnas.1006451107.
Johansson, M.E.V., Sjövall, H., Hansson, G.C., The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10 (2013), 352–361, 10.1038/nrgastro.2013.35.
de Vos, W.M., Microbial biofilms and the human intestinal microbiome. npj Biofilms Microbiomes, 1, 2015, 15005, 10.1038/npjbiofilms.2015.5.
Tytgat, H.L.P., Nobrega, F.L., van der Oost, J., de Vos, W.M., Bowel Biofilms: Tipping Points between a Healthy and Compromised Gut?. Trends Microbiol. 27 (2019), 17–25, 10.1016/j.tim.2018.08.009.
Chapman, M.R., Robinson, L.S., Pinkner, J.S., Roth, R., Heuser, J., Hammar, M., Normark, S., Hultgren, S.J., Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295 (2002), 851–855, 10.1126/science.1067484.
Chen, S.G., Stribinskis, V., Rane, M.J., Demuth, D.R., Gozal, E., Roberts, A.M., Jagadapillai, R., Liu, R., Choe, K., Shivakumar, B., et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci. Rep., 6, 2016, 34477, 10.1038/srep34477.
Sampson, T.R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M.S., Shastri, G.G., Thron, T., Needham, B.D., Horvath, I., Debelius, J.W., et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. Elife, 9, 2020, e53111, 10.7554/eLife.53111.
Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E., Ikuta, F., Parkinson's disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol. 76 (1988), 217–221, 10.1007/BF00687767.
Wakabayashi, K., Takahashi, H., Ohama, E., Takeda, S., Ikuta, F., Lewy bodies in the visceral autonomic nervous system in Parkinson's disease. Adv. Neurol. 60 (1993), 609–612.
Wakabayashi, K., Takahashi, H., Ohama, E., Ikuta, F., Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79 (1990), 581–583, 10.1007/BF00294234.
Qualman, S.J., Haupt, H.M., Yang, P., Hamilton, S.R., Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson's disease. Gastroenterology 87 (1984), 848–856.
Braak, H., de Vos, R.A.I., Bohl, J., Del Tredici, K., Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396 (2006), 67–72, 10.1016/j.neulet.2005.11.012.
Kahle, P.J., Neumann, M., Ozmen, L., Müller, V., Odoy, S., Okamoto, N., Jacobsen, H., Iwatsubo, T., Trojanowski, J.Q., Takahashi, H., et al. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am. J. Pathol. 159 (2001), 2215–2225, 10.1016/s0002-9440(10)63072-6.
Drokhlyansky, E., Smillie, C.S., Van Wittenberghe, N., Ericsson, M., Griffin, G.K., Eraslan, G., Dionne, D., Cuoco, M.S., Goder-Reiser, M.N., Sharova, T., et al. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 182 (2020), 1606–1622.e23, 10.1016/j.cell.2020.08.003.
Keller, D., Erö, C., Markram, H., Cell Densities in the Mouse Brain: A Systematic Review. Front. Neuroanat., 12, 2018, 83, 10.3389/fnana.2018.00083.
Murakami, T.C., Mano, T., Saikawa, S., Horiguchi, S.A., Shigeta, D., Baba, K., Sekiya, H., Shimizu, Y., Tanaka, K.F., Kiyonari, H., et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21 (2018), 625–637, 10.1038/s41593-018-0109-1.
Zhang, J., Pho, V., Bonasera, S.J., Holtzman, J., Tang, A.T., Hellmuth, J., Tang, S., Janak, P.H., Tecott, L.H., Huang, E.J., Essential function of HIPK2 in TGFβ-dependent survival of midbrain dopamine neurons. Nat. Neurosci. 10 (2007), 77–86, 10.1038/nn1816.
Zhang, Y., Granholm, A.-C., Huh, K., Shan, L., Diaz-Ruiz, O., Malik, N., Olson, L., Hoffer, B.J., Lupica, C.R., Hoffman, A.F., Bäckman, C.M., PTEN deletion enhances survival, neurite outgrowth and function of dopamine neuron grafts to MitoPark mice. Brain 135 (2012), 2736–2749, 10.1093/brain/aws196.
Barber Janer, A., Vonck, E., Baekelandt, V., Chapter Two - Modeling synucleinopathies in rodents. Dehay, B., Bezard, E., (eds.) International Review of Movement Disorders Mechanisms of Cell Death and Approaches to Neuroprotection/Disease Modification in Parkinson's Disease, 2021, Academic Press, 65–154, 10.1016/bs.irmvd.2021.09.001.
Chen, H., Ritz, B., The Search for Environmental Causes of Parkinson's Disease: Moving Forward. J. Parkinsons Dis. 8 (2018), S9–S17, 10.3233/JPD-181493.
Di Monte, D.A., Lavasani, M., Manning-Bog, A.B., Environmental Factors in Parkinson's Disease. Neurotoxicology 23 (2002), 487–502, 10.1016/S0161-813X(02)00099-2.
Dick, F.D., De Palma, G., Ahmadi, A., Scott, N.W., Prescott, G.J., Bennett, J., Semple, S., Dick, S., Counsell, C., Mozzoni, P., et al. Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. Occup. Environ. Med. 64 (2007), 666–672, 10.1136/oem.2006.027003.
Warner, T.T., Schapira, A.H.V., Genetic and environmental factors in the cause of Parkinson's disease. Ann. Neurol. 53 (2003), S16–S23, 10.1002/ana.10487.
Bernardo-Cravo, A.P., Schmeller, D.S., Chatzinotas, A., Vredenburg, V.T., Loyau, A., Environmental Factors and Host Microbiomes Shape Host–Pathogen Dynamics. Trends Parasitol. 36 (2020), 616–633, 10.1016/j.pt.2020.04.010.
Singh, Y., El-Hadidi, M., Admard, J., Wassouf, Z., Schulze-Hentrich, J.M., Kohlhofer, U., Quintanilla-Martinez, L., Huson, D., Riess, O., Casadei, N., Enriched Environmental Conditions Modify the Gut Microbiome Composition and Fecal Markers of Inflammation in Parkinson's Disease. Front. Neurosci., 13, 2019, 1032, 10.3389/fnins.2019.01032.
Boertien, J.M., Pereira, P.A.B., Aho, V.T.E., Scheperjans, F., Increasing Comparability and Utility of Gut Microbiome Studies in Parkinson's Disease: A Systematic Review. J. Parkinsons Dis. 9 (2019), S297–S312, 10.3233/JPD-191711.
Gerhardt, S., Mohajeri, M.H., Changes of Colonic Bacterial Composition in Parkinson's Disease and Other Neurodegenerative Diseases. Nutrients, 10, 2018, 708, 10.3390/nu10060708.
Heintz-Buschart, A., Pandey, U., Wicke, T., Sixel-Döring, F., Janzen, A., Sittig-Wiegand, E., Trenkwalder, C., Oertel, W.H., Mollenhauer, B., Wilmes, P., The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33 (2018), 88–98, 10.1002/mds.27105.
Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E., Shannon, K.M., Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30 (2015), 1351–1360, 10.1002/mds.26307.
Scheperjans, F., Aho, V., Pereira, P.A.B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30 (2015), 350–358, 10.1002/mds.26069.
Shen, T., Yue, Y., He, T., Huang, C., Qu, B., Lv, W., Lai, H.-Y., The Association Between the Gut Microbiota and Parkinson's Disease, a Meta-Analysis. Front. Aging Neurosci., 13, 2021, 636545, 10.3389/fnagi.2021.636545.
Unger, M.M., Spiegel, J., Dillmann, K.-U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., Schäfer, K.H., Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat. Disorders 32 (2016), 66–72, 10.1016/j.parkreldis.2016.08.019.
Gorecki, A.M., Preskey, L., Bakeberg, M.C., Kenna, J.E., Gildenhuys, C., MacDougall, G., Dunlop, S.A., Mastaglia, F.L., Akkari, P.A., Koengten, F., Anderton, R.S., Altered Gut Microbiome in Parkinson's Disease and the Influence of Lipopolysaccharide in a Human α-Synuclein Over-Expressing Mouse Model. Front. Neurosci., 13, 2019, 839, 10.3389/fnins.2019.00839.
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell 167 (2016), 1469–1480.e12, 10.1016/j.cell.2016.11.018.
Yan, Y., Ren, S., Duan, Y., Lu, C., Niu, Y., Wang, Z., Inglis, B., Ji, W., Zheng, Y., Si, W., Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. npj Biofilms Microbiomes, 7, 2021, 10.1038/s41522-021-00242-3 69–9.
Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., Balamurugan, R., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 12, 2020, 1474, 10.3390/nu12051474.
Mariat, D., Firmesse, O., Levenez, F., Guimarăes, V., Sokol, H., Doré, J., Corthier, G., Furet, J.-P., The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol., 9, 2009, 123, 10.1186/1471-2180-9-123.
Heeney, D.D., Gareau, M.G., Marco, M.L., Intestinal Lactobacillus in health and disease, a driver or just along for the ride?. Curr. Opin. Biotechnol. 49 (2018), 140–147, 10.1016/j.copbio.2017.08.004.
Martín, R., Miquel, S., Ulmer, J., Kechaou, N., Langella, P., Bermúdez-Humarán, L.G., Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb. Cell Factories, 12, 2013, 71, 10.1186/1475-2859-12-71.
Wang, L., Li, S., Jiang, Y., Zhao, Z., Shen, Y., Zhang, J., Zhao, L., Neuroprotective effect of Lactobacillus plantarum DP189 on MPTP-induced Parkinson's disease model mice. J. Funct.Foods, 85, 2021, 104635, 10.1016/j.jff.2021.104635.
Blackwood, B.P., Yuan, C.Y., Wood, D.R., Nicolas, J.D., Grothaus, J.S., Hunter, C.J., Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. J. Probiotics Health, 5, 2017, 159, 10.4172/2329-8901.1000159.
Stadlbauer, V., Engertsberger, L., Komarova, I., Feldbacher, N., Leber, B., Pichler, G., Fink, N., Scarpatetti, M., Schippinger, W., Schmidt, R., Horvath, A., Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatr., 20, 2020, 248, 10.1186/s12877-020-01644-2.
Plöger, S., Stumpff, F., Penner, G.B., Schulzke, J.-D., Gäbel, G., Martens, H., Shen, Z., Günzel, D., Aschenbach, J.R., Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 1258 (2012), 52–59, 10.1111/j.1749-6632.2012.06553.x.
Glover, J.S., Ticer, T.D., Engevik, M.A., Characterizing the mucin-degrading capacity of the human gut microbiota. Sci. Rep., 12, 2022, 8456, 10.1038/s41598-022-11819-z.
Tailford, L.E., Crost, E.H., Kavanaugh, D., Juge, N., Mucin glycan foraging in the human gut microbiome. Front. Genet., 6, 2015, 81, 10.3389/fgene.2015.00081.
Lee, B., Moon, K.M., Kim, C.Y., Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J. Immunol. Res., 2018, 2018, 2645465, 10.1155/2018/2645465.
Luissint, A.-C., Artus, C., Glacial, F., Ganeshamoorthy, K., Couraud, P.-O., Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS, 9, 2012, 23, 10.1186/2045-8118-9-23.
Fasano, A., All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res., 9, 2020, 10.12688/f1000research.20510.1 F1000 Faculty Rev-69.
Harsanyiova, J., Buday, T., Kralova Trancikova, A., Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Front. Neurosci., 14, 2020, 626, 10.3389/fnins.2020.00626.
Cummins, P.M., Occludin: One Protein, Many Forms. Mol. Cell Biol. 32 (2012), 242–250, 10.1128/MCB.06029-11.
Mankertz, J., Waller, J.S., Hillenbrand, B., Tavalali, S., Florian, P., Schöneberg, T., Fromm, M., Schulzke, J.D., Gene expression of the tight junction protein occludin includes differential splicing and alternative promoter usage. Biochem. Biophys. Res. Commun. 298 (2002), 657–666, 10.1016/S0006-291X(02)02487-7.
McCaffrey, G., Willis, C.L., Staatz, W.D., Nametz, N., Quigley, C.A., Hom, S., Lochhead, J.J., Davis, T.P., Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress. J. Neurochem. 110 (2009), 58–71, 10.1111/j.1471-4159.2009.06113.x.
Del Tredici, K., Braak, H., Lewy pathology and neurodegeneration in premotor Parkinson's disease. Mov. Disord. 27 (2012), 597–607, 10.1002/mds.24921.
Del Tredici, K., Duda, J.E., Peripheral Lewy body pathology in Parkinson's disease and incidental Lewy body disease: Four cases. J. Neurol. Sci. 310 (2011), 100–106, 10.1016/j.jns.2011.06.003.
Vaikath, N.N., Hmila, I., Gupta, V., Erskine, D., Ingelsson, M., El-Agnaf, O.M.A., Antibodies against alpha-synuclein: tools and therapies. J. Neurochem. 150 (2019), 612–625, 10.1111/jnc.14713.
Shannon, K.M., Keshavarzian, A., Dodiya, H.B., Jakate, S., Kordower, J.H., Is alpha-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3 cases. Mov. Disord. 27 (2012), 716–719, 10.1002/mds.25020.
Stokholm, M.G., Danielsen, E.H., Hamilton-Dutoit, S.J., Borghammer, P., Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann. Neurol. 79 (2016), 940–949, 10.1002/ana.24648.
Sidebotham, E.L., Woodward, M.N., Kenny, S.E., Lloyd, D.A., Vaillant, C.R., Edgar, D.H., Assessment of protein gene product 9.5 as a marker of neural crest-derived precursor cells in the developing enteric nervous system. Pediatr. Surg. Int. 17 (2001), 304–307, 10.1007/s003830100599.
Wang, Y., Pan, Y., Price, A., Martin, L.J., Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis. Mol. Neurodegener., 6, 2011, 75, 10.1186/1750-1326-6-75.
Koss, D.J., Erskine, D., Porter, A., Palmoski, P., Menon, H., Todd, O.G.J., Leite, M., Attems, J., Outeiro, T.F., Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol. Commun., 10, 2022, 98, 10.1186/s40478-022-01403-x.
Lauwers, E., Debyser, Z., Van Dorpe, J., De Strooper, B., Nuttin, B., Baekelandt, V., Neuropathology and Neurodegeneration in Rodent Brain Induced by Lentiviral Vectormediated Overexpression of α-Synuclein. Brain Pathol. 13 (2003), 364–372, 10.1111/j.1750-3639.2003.tb00035.x.
Kouroupi, G., Taoufik, E., Vlachos, I.S., Tsioras, K., Antoniou, N., Papastefanaki, F., Chroni-Tzartou, D., Wrasidlo, W., Bohl, D., Stellas, D., et al. Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease. Proc. Natl. Acad. Sci. USA 114 (2017), E3679–E3688, 10.1073/pnas.1617259114.
Del Tredici, K., Rüb, U., de Vos, R.A.I., Bohl, J.R.E., Braak, H., Where Does Parkinson Disease Pathology Begin in the Brain?. J. Neuropathol. Exp. Neurol. 61 (2002), 413–426, 10.1093/jnen/61.5.413.
Garcia, P., Jürgens-Wemheuer, W., Uriarte Huarte, O., Michelucci, A., Masuch, A., Brioschi, S., Weihofen, A., Koncina, E., Coowar, D., Heurtaux, T., et al. Neurodegeneration and neuroinflammation are linked, but independent of alpha-synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia 70 (2022), 935–960, 10.1002/glia.24149.
Soto, C., Pritzkow, S., Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21 (2018), 1332–1340, 10.1038/s41593-018-0235-9.
Lehmann, F.S., Burri, E., Beglinger, C., The role and utility of faecal markers in inflammatory bowel disease. Therap. Adv. Gastroenterol. 8 (2015), 23–36, 10.1177/1756283X14553384.
Schwiertz, A., Spiegel, J., Dillmann, U., Grundmann, D., Bürmann, J., Faßbender, K., Schäfer, K.H., Unger, M.M., Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease. Parkinsonism Relat. Disorders 50 (2018), 104–107, 10.1016/j.parkreldis.2018.02.022.
Amara, J., Saliba, Y., Hajal, J., Smayra, V., Bakhos, J.-J., Sayegh, R., Fares, N., Circadian Rhythm Disruption Aggravates DSS-Induced Colitis in Mice with Fecal Calprotectin as a Marker of Colitis Severity. Dig. Dis. Sci. 64 (2019), 3122–3133, 10.1007/s10620-019-05675-7.
Bradley, J.E., Ramirez, G., Hagood, J.S., Roles and regulation of Thy-1, a context-dependent modulator of cell phenotype. Biofactors 35 (2009), 258–265, 10.1002/biof.41.
Gardai, S.J., Mao, W., Schüle, B., Babcock, M., Schoebel, S., Lorenzana, C., Alexander, J., Kim, S., Glick, H., Hilton, K., et al. Elevated alpha-synuclein impairs innate immune cell function and provides a potential peripheral biomarker for Parkinson's disease. PLoS One, 8, 2013, e71634, 10.1371/journal.pone.0071634.
Bellou, V., Belbasis, L., Tzoulaki, I., Evangelou, E., Ioannidis, J.P.A., Environmental risk factors and Parkinson's disease: An umbrella review of meta-analyses. Parkinsonism Relat. Disorders 23 (2016), 1–9, 10.1016/j.parkreldis.2015.12.008.
Nalls, M.A., Blauwendraat, C., Vallerga, C.L., Heilbron, K., Bandres-Ciga, S., Chang, D., Tan, M., Kia, D.A., Noyce, A.J., Xue, A., et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18 (2019), 1091–1102, 10.1016/S1474-4422(19)30320-5.
Neumann, M., Steimle, A., Grant, E.T., Wolter, M., Parrish, A., Willieme, S., Brenner, D., Martens, E.C., Desai, M.S., Deprivation of dietary fiber in specific-pathogen-free mice promotes susceptibility to the intestinal mucosal pathogen Citrobacter rodentium. Gut Microb., 13, 2021, 1966263, 10.1080/19490976.2021.1966263.
Riva, A., Kuzyk, O., Forsberg, E., Siuzdak, G., Pfann, C., Herbold, C., Daims, H., Loy, A., Warth, B., Berry, D., A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nat. Commun., 10, 2019, 4366, 10.1038/s41467-019-12413-0.
Martens, E.C., Chiang, H.C., Gordon, J.I., Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host Microbe 4 (2008), 447–457, 10.1016/j.chom.2008.09.007.
Lin, R., Sun, Y., Mu, P., Zheng, T., Mu, H., Deng, F., Deng, Y., Wen, J., Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochem. Pharmacol., 175, 2020, 113868, 10.1016/j.bcp.2020.113868.
Rivière, A., Selak, M., Lantin, D., Leroy, F., De Vuyst, L., Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol., 7, 2016, 979, 10.3389/fmicb.2016.00979.
Clairembault, T., Leclair-Visonneau, L., Coron, E., Bourreille, A., Le Dily, S., Vavasseur, F., Heymann, M.-F., Neunlist, M., Derkinderen, P., Structural alterations of the intestinal epithelial barrier in Parkinson's disease. Acta Neuropathol. Commun., 3, 2015, 12, 10.1186/s40478-015-0196-0.
Barichella, M., Severgnini, M., Cilia, R., Cassani, E., Bolliri, C., Caronni, S., Ferri, V., Cancello, R., Ceccarani, C., Faierman, S., et al. Unraveling gut microbiota in Parkinson's disease and atypical parkinsonism. Mov. Disord. 34 (2019), 396–405, 10.1002/mds.27581.
Li, W., Wu, X., Hu, X., Wang, T., Liang, S., Duan, Y., Jin, F., Qin, B., Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features. Sci. China Life Sci. 60 (2017), 1223–1233, 10.1007/s11427-016-9001-4.
Wang, C., Lau, C.Y., Ma, F., Zheng, C., Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc. Natl. Acad. Sci. USA, 118, 2021, e2106504118, 10.1073/pnas.2106504118.
de Nies, L., Busi, S.B., Tsenkova, M., Halder, R., Letellier, E., Wilmes, P., Evolution of the murine gut resistome following broad-spectrum antibiotic treatment. Nat. Commun., 13, 2022, 2296, 10.1038/s41467-022-29919-9.
Mertsalmi, T.H., Pekkonen, E., Scheperjans, F., Antibiotic exposure and risk of Parkinson's disease in Finland: A nationwide case-control study. Mov. Disord. 35 (2020), 431–442, 10.1002/mds.27924.
Ternák, G., Kuti, D., Kovács, K.J., Dysbiosis in Parkinson's disease might be triggered by certain antibiotics. Med. Hypotheses, 137, 2020, 109564, 10.1016/j.mehy.2020.109564.
Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H., Braak, E., Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24 (2003), 197–211, 10.1016/S0197-4580(02)00065-9.
Albani, G., Albani, S., Keshavarzian, A., Editorial: Role of Diet, Physical Activity and Immune System in Parkinson's Disease. Front. Neurol., 11, 2020, 611349, 10.3389/fneur.2020.611349.
Sperens, M., Georgiev, D., Eriksson Domellöf, M., Forsgren, L., Hamberg, K., Hariz, G.-M., Activities of daily living in Parkinson's disease: Time/gender perspective. Acta Neurol. Scand. 141 (2020), 168–176, 10.1111/ane.13189.
Smati, M., Clermont, O., Le Gal, F., Schichmanoff, O., Jauréguy, F., Eddi, A., Denamur, E., Picard, B., Coliville Group. Real-Time PCR for Quantitative Analysis of Human Commensal Escherichia coli Populations Reveals a High Frequency of Subdominant Phylogroups. Appl. Environ. Microbiol. 79 (2013), 5005–5012, 10.1128/AEM.01423-13.
Bacchetti De Gregoris, T., Aldred, N., Clare, A.S., Burgess, J.G., Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Methods 86 (2011), 351–356, 10.1016/j.mimet.2011.06.010.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (2012), 671–675, 10.1038/nmeth.2089.
Kahle, P.J., Neumann, M., Ozmen, L., Müller, V., Jacobsen, H., Schindzielorz, A., Okochi, M., Leimer, U., van Der Putten, H., Probst, A., et al. Subcellular Localization of Wild-Type and Parkinson's Disease-Associated Mutant α-Synuclein in Human and Transgenic Mouse Brain. J. Neurosci. 20 (2000), 6365–6373, 10.1523/JNEUROSCI.20-17-06365.2000.
Yadav, N., Thakur, A.K., Shekhar, N., Ayushi, Potential of Antibiotics for the Treatment and Management of Parkinson's Disease: An Overview. Curr. Drug Res. Rev. 13 (2021), 166–171.
Garcia, P., Youssef, I., Utvik, J.K., Florent-Béchard, S., Barthélémy, V., Malaplate-Armand, C., Kriem, B., Stenger, C., Koziel, V., Olivier, J.-L., et al. Ciliary Neurotrophic Factor Cell-Based Delivery Prevents Synaptic Impairment and Improves Memory in Mouse Models of Alzheimer's Disease. J. Neurosci. 30 (2010), 7516–7527, 10.1523/JNEUROSCI.4182-09.2010.
Keller, J.N., Mark, R.J., Bruce, A.J., Blanc, E., Rothstein, J.D., Uchida, K., Waeg, G., Mattson, M.P., 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80 (1997), 685–696, 10.1016/S0306-4522(97)00065-1.
Dore, J., Ehrlich, S.D., Levenez, F., Pellecchia, M.T., Alberti, A., Bertrand, L., Bork, P., Costea, P.I., Sunagawa, S., Guarner, F., et al. IHMS_SOP 07 V1: Standard Operating Procedure for Fecal Samples DNA Extraction. 2015, Protocol H. International Human Microbiome Standards http://www.microbiome-standards.org.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (2013), D590–D596, 10.1093/nar/gks1219.
McMurdie, P.J., Holmes, S., phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One, 8, 2013, e61217, 10.1371/journal.pone.0061217.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., et al. Vegan: Community Ecology Package. 2020 https://cran.r-project.org/web/packages/vegan/index.html.
Guyenet, S.J., Furrer, S.A., Damian, V.M., Baughan, T.D., La Spada, A.R., Garden, G.A., A Simple Composite Phenotype Scoring System for Evaluating Mouse Models of Cerebellar Ataxia. J. Vis. Exp., 2010, 10.3791/1787.
Tillerson, J.L., Caudle, W.M., Reverón, M.E., Miller, G.W., Detection of Behavioral Impairments Correlated to Neurochemical Deficits in Mice Treated with Moderate Doses of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Exp. Neurol. 178 (2002), 80–90, 10.1006/exnr.2002.8021.
Tillerson, J.L., Miller, G.W., Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of parkinsonism. J. Neurosci. Methods 123 (2003), 189–200, 10.1016/S0165-0270(02)00360-6.
Bouet, V., Boulouard, M., Toutain, J., Divoux, D., Bernaudin, M., Schumann-Bard, P., Freret, T., The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat. Protoc. 4 (2009), 1560–1564, 10.1038/nprot.2009.125.
Ashrafi, A., Garcia, P., Kollmus, H., Schughart, K., Del Sol, A., Buttini, M., Glaab, E., Absence of regulator of G-protein signaling 4 does not protect against dopamine neuron dysfunction and injury in the mouse 6-hydroxydopamine lesion model of Parkinson's disease. Neurobiol. Aging 58 (2017), 30–33, 10.1016/j.neurobiolaging.2017.06.008.
Bussière, T., Bard, F., Barbour, R., Grajeda, H., Guido, T., Khan, K., Schenk, D., Games, D., Seubert, P., Buttini, M., Morphological characterization of Thioflavin-S-positive amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on their clearance. Am. J. Pathol. 165 (2004), 987–995, 10.1016/s0002-9440(10)63360-3.
Schindowski, K., Bretteville, A., Leroy, K., Bégard, S., Brion, J.-P., Hamdane, M., Buée, L., Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am. J. Pathol. 169 (2006), 599–616, 10.2353/ajpath.2006.060002.