[en] This work focuses on the need for modeling and predicting adverse outcomes in immunotoxicology to improve nonclinical assessments of the safety of immunomodulatory therapies. The integrated approach includes, first, the adverse outcome pathway concept established in the toxicology field, and, second, the systems medicine disease map approach for describing molecular mechanisms involved in a particular pathology. The proposed systems immunotoxicology workflow is illustrated with chimeric antigen receptor (CAR) T cell treatment as a use case. To this end, the linear adverse outcome pathway (AOP) is expanded into a molecular interaction model in standard systems biology formats. Then it is shown how knowledge related to immunotoxic events can be integrated, encoded, managed, and explored to benefit the research community. The map is accessible online at https://imsavar.elixir-luxembourg.org via the MINERVA Platform for browsing, commenting, and data visualization. Our work transforms a graphical illustration of an AOP into a digitally structured and standardized form, featuring precise and controlled vocabulary and supporting reproducible computational analyses. Because of annotations to source literature and databases, the map can be further expanded to match the evolving knowledge and research questions. [en] In immunotoxicology, an adverse outcome pathway shows a sequence of molecular and cellular events that result in a toxic outcome upon treatment with a specific drug.In systems biomedicine, a disease map is a description of disease mechanisms on the levels of molecular interactions and intercellular communication for integrating prior knowledge, making sense of newly-generated data, modeling and predictions.We are applying the disease map approach to the area of immunotoxicology and offer an interactive web-based platform for expanding immune-related adverse outcome pathways to detailed representations of the underlying biology.The objective is to model adverse outcomes as a nonclinical assessment strategy by integrating our understanding of the disease complexity and knowledge on the mechanisms of the adverse outcomes of the treatment.We focus on the adverse outcome pathway of CAR T cell treatment and from a simplified linear pathway build a detailed representation of the underlying biology.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Alb, Miriam ; Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Würzburg, Germany
Sakellariou, Christina ; Department of Immunotechnology, Lund University, Lund, Sweden
Sommer, Charline ; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
Sewald, Katherina ; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
Reiche, Kristin ; Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
Gogesch, Patricia ; Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
Roser, Luise A ; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
Ortega Iannazzo, Samira ; Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
Schiffmann, Susanne ; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
Waibler, Zoe ; Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
Neuhaus, Vanessa ; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
Dehmel, Susann ; Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
SATAGOPAM, Venkata ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Clinical and Translational Informatics ; ELIXIR Luxembourg, Belvaux, Luxembourg
SCHNEIDER, Reinhard ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core ; ELIXIR Luxembourg, Belvaux, Luxembourg
OSTASZEWSKI, Marek ; University of Luxembourg ; ELIXIR Luxembourg, Belvaux, Luxembourg
GU, Wei ; University of Luxembourg ; ELIXIR Luxembourg, Belvaux, Luxembourg
This work was part of the imSAVAR project and was supported by the imSAVAR Consortium ( https://imsavar.eu/consortium ). We would like to acknowledge the Responsible and Reproducible Research (R3) team of the Luxembourg Centre for Systems Biomedicine for supporting the project. The work presented in this paper was carried out using the ELIXIR Luxembourg tools and services. The Paul-Ehrlich-Institut receives funding exclusively from the EU Commission.This project has received funding from the Innovative Medicines Initiative (IMI) 2 Joint Undertaking (JU) under grant agreement No [853988]. The JU receives support from the European Union\u2019s Horizon 2020 research and innovation programme and EFPIA and JDRF INTERNATIONAL. This work was part of the imSAVAR project and was supported by the imSAVAR Consortium (https://imsavar.eu/consortium). We would like to acknowledge the Responsible and Reproducible Research (R3) team of the Luxembourg Centre for Systems Biomedicine for supporting the project. The work presented in this paper was carried out using the ELIXIR Luxembourg tools and services. The Paul-Ehrlich-Institut receives funding exclusively from the EU Commission.
Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C., 2016. Logical modeling and dynamical analysis of cellular networks. Front Genet. 7:94. doi: 10.3389/fgene.2016.00094.
Aghamiri SS, Singh V, Naldi A, Helikar T, Soliman S, Niarakis A., 2020. Automated inference of Boolean models from molecular interaction maps using CaSQ. Bioinformatics. 36(16):4473–4482. doi: 10.1093/bioinformatics/btaa484.
Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, Moltu K, Bremnes B, Grønevik E, Muusse M, et al.2020. The European medicines agency review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist. 25(2):e321–e327. doi: 10.1634/theoncologist.2019-0233.
Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al.2010. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 29(3):730–741. doi: 10.1002/etc.34.
Balci H, Siper MC, Saleh N, Safarli I, Roy L, Kilicarslan M, Ozaydin R, Mazein A, Auffray C, Babur Ö, et al.2021. Newt: A comprehensive web-based tool for viewing, constructing and analyzing biological maps. Bioinformatics. 37(10):1475–1477. doi: 10.1093/bioinformatics/btaa850.
Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C., 2005. Macrophage activation syndrome: Characteristic findings on liver biopsy illustrating the key role of activated, IFNγ-producing lymphocytes and IL-6- and TNFaα-producing macrophages. Blood. 105(4):1648–1651. doi: 10.1182/blood-2004-08-2997.
Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M., 2010. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T-cells: Case report of an unforeseen adverse event in a Phase I clinical trial. Mol Ther. 18(4):666–668. doi: 10.1038/mt.2010.31.
Cosenza M, Sacchi S, Pozzi S., 2021. Cytokine release syndrome associated with T-cell-based therapies for hematological malignancies: Pathophysiology, clinical presentation, and treatment. Int J Mol Sci. 22(14):7652. doi: 10.3390/ijms22147652.
Czauderna T, Klukas C, Schreiber F., 2010. Editing, validating and translating of SBGN maps. Bioinformatics. 26(18):2340–2341. doi: 10.1093/bioinformatics/btq407.
Davila ML, Brentjens R, Wang X, Rivière I, Sadelain M., 2012. How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology. 1(9):1577–1583. doi: 10.4161/onci.22524.
Freyer CW., 2018. Tisagenlecleucel: The first CAR on the highway to remission for acute lymphoblastic leukemia. J Adv Pract Oncol. 9(5):537–544.
Fujita KA, Ostaszewski M, Matsuoka Y, Ghosh S, Glaab E, Trefois C, Crespo I, Perumal TM, Jurkowski W, Antony PMA, et al.2014. Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol. 49(1):88–102. doi: 10.1007/s12035-013-8489-4.
Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, et al.2012. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40:D1100–D1107. doi: 10.1093/nar/gkr777.
Gawron P, Ostaszewski M, Satagopam V, Gebel S, Mazein A, Kuzma M, Zorzan S, McGee F, Otjacques B, Balling R, et al.2016. MINERVA-a platform for visualization and curation of molecular interaction networks. NPJ Syst Biol Appl. 2:16020.
Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M., 2018. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 24(6):731–738. doi: 10.1038/s41591-018-0041-7.
Grom AA, Horne A, De Benedetti F., 2016. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 12(5):259–268. doi: 10.1038/nrrheum.2015.179.
Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, Wurfel MM, López JA, Chen J, Chung D, Harju-Baker S, et al.2017. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 130(21):2295–2306. doi: 10.1182/blood-2017-06-793141.
Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov A, Wicks B, Shrestha M, Limbu K, Rogers JA., 2012. The cell collective: Toward an open and collaborative approach to systems biology. BMC Syst Biol. 6(1):96. doi: 10.1186/1752-0509-6-96.
Helikar T, Kowal B, Rogers JA., 2013. A cell simulator platform: the cell collective. Clin Pharmacol Ther. 93(5):393–395. doi: 10.1038/clpt.2013.41.
Hoksza D, Gawron P, Ostaszewski M, Hasenauer J, Schneider R., 2020. Closing the gap between formats for storing layout information in systems biology. Brief Bioinform. 21(4):1249–1260. doi: 10.1093/bib/bbz067.
Hoksza D, Gawron P, Ostaszewski M, Smula E, Schneider R., 2019. MINERVA API and plugins: Opening molecular network analysis and visualization to the community. Bioinformatics. 35(21):4496–4498. doi: 10.1093/bioinformatics/btz286.
Horvat T, Landesmann B, Lostia A, Vinken M, Munn S, Whelan M., 2017. Adverse outcome pathway development from protein alkylation to liver fibrosis. Arch Toxicol. 91(4):1523–1543. doi: 10.1007/s00204-016-1814-8.
Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, et al.2003. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics. 19(4):524–531. doi: 10.1093/bioinformatics/btg015.
Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, Jensen MC, Riddell SR., 2015. The non-signaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo anti-tumor activity. Cancer Immunol Res. 3(2):125–135. doi: 10.1158/2326-6066.CIR-14-0127.
Kell DB, Pretorius E., 2014. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 6(4):748–773. doi: 10.1039/c3mt00347g.
Kiouptsi K, Reinhardt C., 2020. Physiological roles of the von Willebrand factor-factor VIII interaction. Subcell. Biochem. 94:437–464.
Kondratova M, Sompairac N, Barillot E, Zinovyev A, Kuperstein I., 2018. Signalling maps in cancer research: Construction and data analysis. Database. 2018:bay036. doi: 10.1093/database/bay036.
Kuperstein I, Bonnet E, Nguyen H-A, Cohen D, Viara E, Grieco L, Fourquet S, Calzone L, Russo C, Kondratova M, et al.2015. Atlas of cancer signalling network: A systems biology resource for integrative analysis of cancer data with Google Maps. Oncogenesis. 4(7):e160–e160. doi: 10.1038/oncsis.2015.19.
Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, et al.2005. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol. 23(12):1509–1515. doi: 10.1038/nbt1156.
Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, et al.2009. The systems biology graphical notation. Nat Biotechnol. 27(8):735–741. doi: 10.1038/nbt.1558.
Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, Maus MV, Park JH, Mead E, Pavletic S, et al.2019. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 25(4):625–638. doi: 10.1016/j.bbmt.2018.12.758.
Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M, Schildknecht S, Waldmann T, et al.2017. Adverse outcome pathways: Opportunities, limitations and open questions. Arch Toxicol. 91(11):3477–3505. doi: 10.1007/s00204-017-2045-3.
Liu Y, Jie X, Nian L, Wang Y, Wang C, Ma J, Jiang J, Wu Q, Qiao J, Chen W, et al.2023. A combination of pre-infusion serum ferritin, CRP and IL-6 predicts outcome in relapsed/refractory multiple myeloma patients treated with CAR-T cells. Front Immunol. 14:1169071. doi: 10.3389/fimmu.2023.1169071.
Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, et al.2019. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multi-center, Phase 1-2 trial. Lancet Oncol. 20(1):31–42. doi: 10.1016/S1470-2045(18)30864-7.
Mai J, Virtue A, Shen J, Wang H, Yang X-F., 2013. An evolving new paradigm: Endothelial cells–conditional innate immune cells. J Hematol Oncol. 6(1):61. doi: 10.1186/1756-8722-6-61.
Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust JH, Kadapakkam M, Weber EW, Tousley AM, et al.2020. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10(5):702–723. doi: 10.1158/2159-8290.CD-19-0945.
Maude SL, Barrett D, Teachey DT, Grupp SA., 2014. Managing cytokine release syndrome associated with novel T-cell-engaging therapies. Cancer J. 20(2):119–122. doi: 10.1097/PPO.0000000000000035.
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et al.2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 371(16):1507–1517. doi: 10.1056/NEJMoa1407222.
Mazein A, Acencio ML, Balaur I, Rougny A, Welter D, Niarakis A, Ramirez Ardila D, Dogrusoz U, Gawron P, Satagopam V, et al.2023. A guide for developing comprehensive systems biology maps of disease mechanisms: Planning, construction and maintenance. Front Bioinform. 3:1197310. doi: 10.3389/fbinf.2023.1197310.
Mazein A, Ivanova O, Balaur I, Ostaszewski M, Berzhitskaya V, Serebriyskaya T, Ligon T, Hasenauer J, De Meulder B, Overall RW, et al.2021. AsthmaMap: An interactive knowledge repository for mechanisms of asthma. J Allergy Clin Immunol. 147(3):853–856. doi: 10.1016/j.jaci.2020.11.032.
Mazein A, Ostaszewski M, Kuperstein I, Watterson S, Le Novère N, Lefaudeux D, De Meulder B, Pellet J, Balaur I, Saqi M, et al.2018. Systems medicine disease maps: Community-driven comprehensive representation of disease mechanisms. NPJ Syst Biol Appl. 4:21.
Mazein A, Rougny A, Karr JR, Saez-Rodriguez J, Ostaszewski M, Schneider R., 2021. Reusability and composability in process description maps: RAS-RAF-MEK-ERK signalling. Brief Bioinform. 22:bbab103.
Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, Himmelfarb J, Liles WC, Wurfel MM., 2015. Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLOS One. 10(10):e0141251. doi: 10.1371/journal.pone.0141251.
Monraz Gomez LC, Kondratova M, Ravel J-M, Barillot E, Zinovyev A, Kuperstein I., 2019. Application of atlas of cancer signalling network in preclinical studies. Brief Bioinform. 20(2):701–716. doi: 10.1093/bib/bby031.
Morris EC, Neelapu SS, Giavridis T, Sadelain M., 2022. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 22(2):85–96. doi: 10.1038/s41577-021-00547-6.
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Locke FL, Lin Y, Jain N, Daver N, Gulbis AM, Adkins S, et al.2018. Toxicity management after chimeric antigen receptor T-cell therapy: One size does not fit ‘ALL’. Nat Rev Clin Oncol. 15(4):218–218. doi: 10.1038/nrclinonc.2018.20.
OECD. 2018. Users’ handbook supplement to the guidance document for developing and assessing adverse outcome pathways. https://www.oecd-ilibrary.org/environment/users-handbook-supplement-to-the-guidance-document-for-developing-and-assessing-adverse-outcome-pathways_5jlv1m9d1g32-en.
Ostaszewski M, Gebel S, Kuperstein I, Mazein A, Zinovyev A, Dogrusoz U, Hasenauer J, Fleming RMT, Le Novère N, Gawron P, et al.2019. Community-driven roadmap for integrated disease maps. Brief Bioinform. 20(2):659–670. doi: 10.1093/bib/bby024.
Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta-Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, et al.2021. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol. 17(10):e10387. doi: 10.15252/msb.202110387.
Parton A, McGilligan V, Chemaly M, O'Kane M, Watterson S., 2019. New models of atherosclerosis and multi-drug therapeutic interventions. Bioinformatics. 35(14):2449–2457. doi: 10.1093/bioinformatics/bty980.
Sadelain M, Brentjens R, Rivière I., 2013. The basic principles of chimeric antigen receptor design. Cancer Discov. 3(4):388–398. doi: 10.1158/2159-8290.CD-12-0548.
Shah D, Soper B, Shopland L., 2023. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol. 14:1190379. doi: 10.3389/fimmu.2023.1190379.
Singh N, Hofmann TJ, Gershenson Z, Levine BL, Grupp SA, Teachey DT, Barrett DM., 2017. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 19(7):867–880. doi: 10.1016/j.jcyt.2017.04.001.
Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, Mazein A, Bonnet E, Petit-Teixeira E, Niarakis A, et al.2020. RA-map: Building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database. 2020:baaa017. doi: 10.1093/database/baaa017.
Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, Pequignot E, Gonzalez VE, Chen F, Finklestein J, et al.2016. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6(6):664–679. doi: 10.1158/2159-8290.CD-16-0040.
Wimalaratne SM, Juty N, Kunze J, Janée G, McMurry JA, Beard N, Jimenez R, Grethe JS, Hermjakob H, Martone ME, et al.2018. Uniform resolution of compact identifiers for biomedical data. Sci Data. 5(1):180029. doi: 10.1038/sdata.2018.29.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al.2018. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1):D1074–D1082. doi: 10.1093/nar/gkx1037.