[en] Colorectal cancer (CRC) patients have been shown to possess an altered gut microbiome. Diet is a well-established modulator of the microbiome, and thus, dietary interventions might have a beneficial effect on CRC. An attenuating effect of the ketogenic diet (KD) on CRC cell growth has been previously observed, however the role of the gut microbiome in driving this effect remains unknown. Here, we describe a reduced colonic tumor burden upon KD consumption in a CRC mouse model with a humanized microbiome. Importantly, we demonstrate a causal relationship through microbiome transplantation into germ-free mice, whereby alterations in the gut microbiota were maintained in the absence of continued selective pressure from the KD. Specifically, we identify a shift toward bacterial species that produce stearic acid in ketogenic conditions, whereas consumers were depleted, resulting in elevated levels of free stearate in the gut lumen. This microbial product demonstrates tumor-suppressing properties by inducing apoptosis in cancer cells and decreasing colonic Th17 immune cell populations. Taken together, the beneficial effects of the KD are mediated through alterations in the gut microbiome, including, among others, increased stearic acid production, which in turn significantly reduces intestinal tumor growth.
Disciplines :
Food science Microbiology Gastroenterology & hepatology Human health sciences: Multidisciplinary, general & others Oncology
Author, co-author :
TSENKOVA, Mina ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine > Team Elisabeth LETELLIER
BRAUER, Madita ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
POZDEEV, Vitaly ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
KASAKIN, Marat ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Enzymology and Metabolism > Team Carole LINSTER
BUSI, Susheel Bhanu ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES ; UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
SCHMOETTEN, Maryse ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine > Team Elisabeth LETELLIER
CHEUNG, Dean ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
MEYERS, Marianne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
RODRIGUEZ, Fabien ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
GAIGNEAUX, Anthoula ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
KONCINA, Eric ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Gilson, Cedric ; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
SCHLICKER, Lisa ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Metabolomics Platform
Herebian, Diran; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
SCHMITZ, Martine ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine > Team Iris BEHRMANN
de Nies, Laura; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Mayatepek, Ertan ; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
de Beaufort, Carine; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg ; Pediatric Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
Cramer, Thorsten ; Department of General, Visceral, Children and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
MEISER, Johannes ; University of Luxembourg ; Department of Cancer Research (DOCR), Luxembourg Institute of Health, Luxembourg, Luxembourg
FNR11282028 - miRMet - Role Of Mir-371-373 Cluster In Tumor Initiation And Metastatic Colonization, 2016 (15/03/2017-14/07/2020) - Elisabeth Letellier
Funding text :
This work was supported by the Luxembourg National Research Fund (FNR) (grant nos. CORE/C16/BM/11282028 (E.L.), PoC/18/12554295 (E.L.), AFR 17103240 (C.G.), PRIDE17/11823097 (M.T., M.K., L.d.N.) and CORE/15/BM/10404093 (P.W.)), by the Luxembourg National Research Fund and the Fondation Cancer Luxembourg (grant no. CORE/C20/BM/14591557 (E.L.)), as well as by the Fondation du P\u00E9lican de Mie and Pierre Hippert-Faber under the aegis of the Fondation de Luxembourg (\u2018Pelican Grant\u2019; M.T. and M.M.), a FNRS-T\u00E9l\u00E9vie grant to M.M., no. 7.4565.21-40007364), an Internal Research Project at the University of Luxembourg (MiDiCa\u2014integrated analysis of the effects of microbiome-diet interactions on human colorectal adenocarcinoma enterocytes; E.L., P.W. and S.H.), the Fondation Cancer and the Fondation Kriibskrank Kanner Luxembourg (V.I.P), the Action LIONS Vaincre le Cancer Luxembourg and a European Research Council grant under the European Union\u2019s Horizon 2020 research and innovation program (grant agreement no. 863664 to P.W.). This project was also supported by the Doctoral School in Science and Engineering (M.T., M.K., M.M. and L.d.N.) and the Department of Life Sciences and Medicine at the University of Luxembourg. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This work is supported by NIH grant U2C-DK119886 and OT2-OD030544 grants as metabolomics data has been uploaded at the NIH Common Fund\u2019s National Metabolomics Data Repository (NMDR) website.This work was supported by the Luxembourg National Research Fund (FNR) (grant nos. CORE/C16/BM/11282028 (E.L.), PoC/18/12554295 (E.L.), AFR 17103240 (C.G.), PRIDE17/11823097 (M.T., M.K., L.d.N.) and CORE/15/BM/10404093 (P.W.)), by the Luxembourg National Research Fund and the Fondation Cancer Luxembourg (grant no. CORE/C20/BM/14591557 (E.L.)), as well as by the Fondation du P\u00E9lican de Mie and Pierre Hippert-Faber under the aegis of the Fondation de Luxembourg (\u2018Pelican Grant\u2019; M.T. and M.M.), a FNRS-T\u00E9l\u00E9vie grant to M.M., no. 7.4565.21-40007364), an Internal Research Project at the University of Luxembourg (MiDiCa\u2014integrated analysis of the effects of microbiome-diet interactions on human colorectal adenocarcinoma enterocytes; E.L., P.W. and S.H.), the Fondation Cancer and the Fondation Kriibskrank Kanner Luxembourg (V.I.P), the Action LIONS Vaincre le Cancer Luxembourg and a European Research Council grant under the European Union\u2019s Horizon 2020 research and innovation program (grant agreement no. 863664 to P.W.). This project was also supported by the Doctoral School in Science and Engineering (M.T., M.K., M.M. and L.d.N.) and the Department of Life Sciences and Medicine at the University of Luxembourg. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This work is supported by NIH grant U2C-DK119886 and OT2-OD030544 grants as metabolomics data has been uploaded at the NIH Common Fund\u2019s National Metabolomics Data Repository (NMDR) website.
Colorectal cancer statistics. WCRF Internationalhttps://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/.
N. Akimoto et al. Rising incidence of early-onset colorectal cancer - a call to action Nat. Rev. Clin. Oncol. 18 230 243 33219329 0884.62022 10.1038/s41571-020-00445-1
D.D. Weber et al. Ketogenic diet in the treatment of cancer – where do we stand? Mol. Metab. 33 102 121 31399389 7056920 0656.35101 10.1016/j.molmet.2019.06.026
O. Dmitrieva-Posocco et al. β-Hydroxybutyrate suppresses colorectal cancer Nature 605 160 165 2022Natur.605.160D 1:CAS:528:DC%2BB38XhtFersLjJ 35477756 9448510 10.1038/s41586-022-04649-6
Q.Y. Ang et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 Cells Cell 181 1263 1275.e16 1:CAS:528:DC%2BB3cXpvF2qs74%3D 32437658 7293577 1458.55012 10.1016/j.cell.2020.04.027
C. Kong et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome Signal Transduct. Target. Ther. 6 154 1:CAS:528:DC%2BB3MXhtVOlsL7F 33888680 8062677 1211.34083 10.1038/s41392-021-00549-9
R. Wei et al. Ketogenesis attenuates KLF5-dependent production of CXCL12 to overcome the immunosuppressive tumor microenvironment in colorectal cancer Cancer Res 82 1575 1588 1:CAS:528:DC%2BB38XhsVegurvM 35247887 9018557 1493.37007 10.1158/0008-5472.CAN-21-2778
G. Ferrere et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade JCI Insight 6 145207 33320838 1460.68059 10.1172/jci.insight.145207
C.C. Wong J. Yu Gut microbiota in colorectal cancer development and therapy Nat. Rev. Clin. Oncol. 20 429 452 37169888 0285.33008 10.1038/s41571-023-00766-x
G. El Tekle W.S. Garrett Bacteria in cancer initiation, promotion and progression Nat. Rev. Cancer 23 600 618 1:CAS:528:DC%2BB3sXhtlOjsrzE 37400581 1542.03015 10.1038/s41568-023-00594-2
A. Paoli et al. Ketogenic diet and microbiota: friends or enemies? Genes 10 534 1:CAS:528:DC%2BC1MXhvFSmtL3M 31311141 6678592 1469.03065 10.3390/genes10070534
Y.S. Hyun et al. Role of IL-17A in the development of colitis-associated cancer Carcinogenesis 33 931 936 1:CAS:528:DC%2BC38Xlt1Kisrg%3D 22354874 1197.90168 10.1093/carcin/bgs106
C. Cairo T.J. Webb Effective barriers: the role of NKT cells and innate lymphoid cells in the gut J. Immunol. Baltim. Md 1950 208 235 246 1:CAS:528:DC%2BB38Xit1GlsL4%3D 1158.91472
A. Jukic L. Bakiri E.F. Wagner H. Tilg T.E. Adolph Calprotectin: from biomarker to biological function Gut 70 1978 1988 1:CAS:528:DC%2BB3MXitlGkurzL 34145045 10.1136/gutjnl-2021-324855
C. Mu et al. Probiotics counteract hepatic steatosis caused by ketogenic diet and upregulate AMPK signaling in a model of infantile epilepsy EBioMedicine 76 1:CAS:528:DC%2BB38Xht1aiurfM 35148983 8882998 10.1016/j.ebiom.2022.103838 103838
F. Nan et al. Mannose: a sweet option in the treatment of cancer and inflammation Front. Pharmacol. 13 877543 1:CAS:528:DC%2BB38XhsFentLrI 35645798 9136145 10.3389/fphar.2022.877543
P.S. Gonzalez et al. Mannose impairs tumour growth and enhances chemotherapy Nature 563 719 723 2018Natur.563.719G 1:CAS:528:DC%2BC1cXitlGgurzM 30464341 1500.46034 10.1038/s41586-018-0729-3
Q. Liu X. Li H. Zhang H. Li Mannose attenuates colitis-associated colorectal tumorigenesis by targeting tumor-associated macrophages J. Cancer Prev. 27 31 41 2022noph.book...L 1:CAS:528:DC%2BB38XhsVOit7vI 35419307 8984649 07766263 10.15430/JCP.2022.27.1.31
V. De Simone F. Pallone G. Monteleone C. Stolfi Role of TH17 cytokines in the control of colorectal cancer Oncoimmunology 2 e26617 24498548 3902118 10.4161/onci.26617
D. Ternes et al. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 28 401 423 1:CAS:528:DC%2BB3cXhslWjurw%3D 32298617 1398.51038 10.1016/j.tim.2020.01.001
B.J. Parker P.A. Wearsch A.C.M. Veloo A. Rodriguez-Palacios The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health Front. Immunol. 11 906 1:CAS:528:DC%2BB3cXitVWnu73F 32582143 7296073 10.3389/fimmu.2020.00906
J. Yao C.O. Rock Exogenous fatty acid metabolism in bacteria Biochimie 141 30 39 1:CAS:528:DC%2BC2sXhtFSmtLvL 28668270 5665373 1390.76845 10.1016/j.biochi.2017.06.015
C. Sohlenkamp O. Geiger Bacterial membrane lipids: diversity in structures and pathways FEMS Microbiol. Rev. 40 133 159 1:CAS:528:DC%2BC2sXhs1ektrzJ 25862689 10.1093/femsre/fuv008
B.T. Caswell et al. Thioesterase enzyme families: functions, structures, and mechanisms Protein Sci. 31 652 676 1:CAS:528:DC%2BB38XjsVGjuw%3D%3D 34921469 8862431 0166.45001 10.1002/pro.4263
S. Han et al. A metabolomics pipeline for mechanistic interrogation of the gut microbiome Nature 595 415 420 2021Natur.595.415H 1:CAS:528:DC%2BB3MXhsFGqtrjP 34262212 8939302 1491.11101 10.1038/s41586-021-03707-9
V. Gopalakrishnan et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science 359 97 103 2018Sci..359..97G 1:CAS:528:DC%2BC1cXjslOrsA%3D%3D 29097493 1357.70006 10.1126/science.aan4236
V. Matson et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients Science 359 104 108 2018Sci..359.104M 1:CAS:528:DC%2BC1cXjslOksg%3D%3D 29302014 6707353 10.1126/science.aao3290
B. Routy et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors Science 359 91 97 2018Sci..359..91R 1:CAS:528:DC%2BC1cXjslOrsw%3D%3D 29097494 10.1126/science.aan3706
Y. Zhang et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet Epilepsy Res 145 163 168 2018pgrb.book...Z 30007242 10.1016/j.eplepsyres.2018.06.015
C.A. Olson et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet Cell 173 1728 1741.e13 1:CAS:528:DC%2BC1cXhtVajurjN 29804833 6003870 1549.65515 10.1016/j.cell.2018.04.027
Y. Cao K.U. Förstner J. Vogel C.J. Smith cis-encoded small RNAs, a conserved mechanism for repression of polysaccharide utilization in bacteroides J. Bacteriol. 198 2410 2418 1:CAS:528:DC%2BC28XhvFWksrzF 27353652 4999932 10.1128/JB.00381-16
N.A. Pudlo et al. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans mBio 6 e01282 15 1:CAS:528:DC%2BC2sXltVOgtQ%3D%3D 26556271 4659458 1210.60079 10.1128/mBio.01282-15
C. Milani et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut Sci. Rep. 5 2015NatSR..515782M 1:CAS:528:DC%2BC2MXhslCntrnP 26506949 4623478 1331.92179 10.1038/srep15782 15782
E.M. Brown J. Clardy R.J. Xavier Gut microbiome lipid metabolism and its impact on host physiology Cell Host Microbe 31 173 186 1:CAS:528:DC%2BB3sXivVyrurw%3D 36758518 10124142 07641072 10.1016/j.chom.2023.01.009
S. Yamada et al. Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis BMC Gastroenterol. 17 136 29187142 5708095 1489.60121 10.1186/s12876-017-0689-3
H. Guillou D. Zadravec P.G.P. Martin A. Jacobsson The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice Prog. Lipid Res. 49 186 199 1:CAS:528:DC%2BC3cXit1Gltbo%3D 20018209 10.1016/j.plipres.2009.12.002
K.S. Kim et al. Genome-wide multi-omics analysis reveals the nutrient-dependent metabolic features of mucin-degrading gut bacteria Gut Microbes 15 37305974 10262761 10.1080/19490976.2023.2221811 2221811
M.T. Flowers J.M. Ntambi Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism Curr. Opin. Lipidol. 19 248 256 1:CAS:528:DC%2BD1cXlsV2rtLo%3D 18460915 4201499 0047.22604 10.1097/MOL.0b013e3282f9b54d
E.C. Lien et al. Low glycaemic diets alter lipid metabolism to influence tumour growth Nature 599 302 307 2021Natur.599.302L 1:CAS:528:DC%2BB3MXit1yktb%2FK 34671163 8628459 10.1038/s41586-021-04049-2
E. Grajchen et al. Fatty acid desaturation by stearoyl-CoA desaturase-1 controls regulatory T cell differentiation and autoimmunity Cell. Mol. Immunol. 20 666 679 1:CAS:528:DC%2BB3sXnsV2itLk%3D 37041314 10229556 10.1038/s41423-023-01011-2
A. Kindt et al. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice Nat. Commun. 9 2018NatCo..9.3760K 30218046 6138742 1423.18044 10.1038/s41467-018-05767-4 3760
N. McKain K.J. Shingfield R.J. Wallace Metabolism of conjugated linoleic acids and 18: 1 fatty acids by ruminal bacteria: products and mechanisms Microbiology 156 579 588 1:CAS:528:DC%2BC3cXivVSlsbk%3D 19926650 10.1099/mic.0.036442-0
B.F. Fermor et al. Fatty acid composition of normal and malignant cells and cytotoxicity of stearic, oleic and sterculic acids in vitro Eur. J. Cancer Oxf. Engl. 1990 28A 1143 1147 1:CAS:528:DyaK3sXptlyltw%3D%3D 44.1102.02
N.A. Habib et al. Stearic acid and carcinogenesis Br. J. Cancer 56 455 458 1:CAS:528:DyaL1cXjtFCmtQ%3D%3D 3689663 2001814 1055.92027 10.1038/bjc.1987.223
L.M. Evans S.L. Cowey G.P. Siegal R.W. Hardy Stearate preferentially induces apoptosis in human breast cancer cells Nutr. Cancer 61 746 753 1:CAS:528:DC%2BD1MXht12gsrzI 19838949 2946230 10.1080/01635580902825597
J. Mitchel et al. Computational identification of stearic acid as a potential PDK1 inhibitor and in vitro validation of stearic acid as colon cancer therapeutic in combination with 5-fluorouracil Cancer Inf. 20 11769351211065979 0850.90013 10.1177/11769351211065979
S.A. Bustin et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments Clin. Chem. 55 611 622 1:CAS:528:DC%2BD1MXktVWqs7g%3D 19246619 1364.94269 10.1373/clinchem.2008.112797
S. Lindgreen AdapterRemoval: easy cleaning of next-generation sequencing reads BMC Res. Notes 5 22748135 3532080 1151.74333 10.1186/1756-0500-5-337 337
M. Schubert S. Lindgreen L. Orlando AdapterRemoval v2: rapid adapter trimming, identification, and read merging BMC Res. Notes 9 26868221 4751634 10.1186/s13104-016-1900-2 88
A. Dobin et al. STAR: ultrafast universal RNA-seq aligner Bioinformatics 29 15 21 1:CAS:528:DC%2BC38XhvV2gsbnF 23104886 10.1093/bioinformatics/bts635
S.W. Wingett S. Andrews FastQ Screen: a tool for multi-genome mapping and quality control F1000Research 7 1338 30254741 6124377 1397.93212 10.12688/f1000research.15931.1
Y. Liao G.K. Smyth W. Shi featureCounts: an efficient general purpose program for assigning sequence reads to genomic features Bioinformatics 30 923 930 1:CAS:528:DC%2BC2cXltFGqu7c%3D 24227677 1304.35532 10.1093/bioinformatics/btt656
A. Zhu J.G. Ibrahim M.I. Love Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences Bioinformatics 35 2084 2092 1:CAS:528:DC%2BB3cXhsVOltbY%3D 30395178 07967937 10.1093/bioinformatics/bty895
J.T. Leek W.E. Johnson H.S. Parker A.E. Jaffe J.D. Storey The sva package for removing batch effects and other unwanted variation in high-throughput experiments Bioinformatics 28 882 883 1:CAS:528:DC%2BC38Xks1Sisb4%3D 22257669 3307112 1296.92046 10.1093/bioinformatics/bts034
M.I. Love W. Huber S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 15 25516281 4302049 0723.40002 10.1186/s13059-014-0550-8 550
Stephens, M. et al. ashr: methods for adaptive shrinkage, using empirical bayes. 2.2-63 https://doi.org/10.32614/CRAN.package.ashr (2016).
Z. Chen C. Chen L. Li T. Zhang X. Wang The spliceosome pathway activity correlates with reduced anti-tumor immunity and immunotherapy response, and unfavorable clinical outcomes in pan-cancer Comput. Struct. Biotechnol. J. 19 5428 5442 1:CAS:528:DC%2BB3MXisF2gsLvN 34667536 8501672 1371.78324 10.1016/j.csbj.2021.09.029
M. Foroutan et al. Single sample scoring of molecular phenotypes BMC Bioinforma. 19 1:CAS:528:DC%2BC1MXht1SksrnP 1399.35315 10.1186/s12859-018-2435-4 404
D.D. Bhuva J. Cursons M.J. Davis Stable gene expression for normalisation and single-sample scoring Nucleic Acids Res 48 e113 e113 1:CAS:528:DC%2BB3MXkt1Gntbs%3D 32997146 7641762 1525.62119 10.1093/nar/gkaa802
B.J. Callahan et al. DADA2: High-resolution sample inference from Illumina amplicon data Nat. Methods 13 581 583 1:CAS:528:DC%2BC28XosVWitb4%3D 27214047 4927377 1409.00120 10.1038/nmeth.3869
H. Lin S.D. Peddada Analysis of microbial compositions: a review of normalization and differential abundance analysis Npj Biofilms Microbiomes 6 1 13 1266.60029 10.1038/s41522-020-00160-w
S. Anders W. Huber Differential expression analysis for sequence count data Genome Biol. 11 1:CAS:528:DC%2BC3cXhsVahs7bI 20979621 3218662 1158.05315 10.1186/gb-2010-11-10-r106 R106
P.J. McMurdie S. Holmes phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data PLOS ONE 8 2013PLoSO..861217M 1:CAS:528:DC%2BC3sXntVWht7w%3D 23630581 3632530 10.1371/journal.pone.0061217 e61217
E.L. Clarke et al. Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments Microbiome 7 30902113 6429786 1429.62137 10.1186/s40168-019-0658-x 46
F. Beghini et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 eLife 10 1:CAS:528:DC%2BB3MXislantrzF 33944776 8096432 1162.74409 10.7554/eLife.65088 e65088
S. Narayanasamy et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses Genome Biol. 17 27986083 5159968 1161.30316 10.1186/s13059-016-1116-8 260
O. Hickl P. Queirós P. Wilmes P. May A. Heintz-Buschart binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets Brief. Bioinform. 23 bbac431 36239393 9677464 10.1093/bib/bbac431
M. Kanehisa S. Goto KEGG: kyoto encyclopedia of genes and genomes Nucleic Acids Res 28 27 30 1:CAS:528:DC%2BD3cXhvVGqu74%3D 10592173 102409 0958.35507 10.1093/nar/28.1.27
M. Kanehisa Toward understanding the origin and evolution of cellular organisms Protein Sci. 28 1947 1951 1:CAS:528:DC%2BC1MXhslaisL3I 31441146 6798127 1426.14010 10.1002/pro.3715
M. Kanehisa M. Furumichi Y. Sato M. Kawashima M. Ishiguro-Watanabe KEGG for taxonomy-based analysis of pathways and genomes Nucleic Acids Res 51 D587 D592 1:CAS:528:DC%2BB3sXht1entLzL 36300620 10.1093/nar/gkac963
J.C. García-Cañaveras M.T. Donato J.V. Castell A. Lahoz Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method J. Lipid Res. 53 2231 2241 22822028 3435556 10.1194/jlr.D028803
K. Hiller et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis Anal. Chem. 81 3429 3439 1:CAS:528:DC%2BD1MXktlSlu7o%3D 19358599 1206.65236 10.1021/ac802689c
B. De Saedeleer et al. Systematic characterization of human gut microbiome-secreted molecules by integrated multi-omics ISME Commun. 1 1 6 1219.70066 10.1038/s43705-021-00078-0
J. Xue C. Guijas H.P. Benton B. Warth G. Siuzdak METLIN MS2 molecular standards database: a broad chemical and biological resource Nat. Methods 17 953 954 1:CAS:528:DC%2BB3cXhs1KhtL%2FF 32839599 8802982 10.1038/s41592-020-0942-5
Z. Gu R. Eils M. Schlesner Complex heatmaps reveal patterns and correlations in multidimensional genomic data Bioinformatics 32 2847 2849 1:CAS:528:DC%2BC2sXhtFGlurjF 27207943 0706.46023 10.1093/bioinformatics/btw313
M. Sud et al. Metabolomics workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools Nucleic Acids Res 44 D463 D470 1:CAS:528:DC%2BC2sXhtV2nsrvE 26467476 1475.03054 10.1093/nar/gkv1042
Varrette, S., Bouvry, P., Cartiaux, H. & Georgatos, F. Management of an academic HPC cluster: The UL experience. in 2014International Conference on High Performance Computing & Simulation (HPCS) 959–967 (IEEE, Bologna, Italy, 2014).