Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Learning High-level Semantic-Relational Concepts for SLAM
MILLÁN ROMERA, José Andrés; BAVLE, Hriday; SHAHEER, Muhammad et al.
2023In IEEE International Conference on Intelligent Robots and Systems, p. 8
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
IROS_2024_Learning_High_level_Semantic_Relational_Concepts_for_SLAM (3).pdf
Postprint Auteur (3.75 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Learning; Computer Science - Robotics
Résumé :
[en] Recent works on SLAM extend their pose graphs with higher-level semantic concepts like Rooms exploiting relationships between them, to provide, not only a richer representation of the situation/environment but also to improve the accuracy of its estimation. Concretely, our previous work, Situational Graphs (S-Graphs+), a pioneer in jointly leverag- ing semantic relationships in the factor optimization process, relies on semantic entities such as Planes and Rooms, whose relationship is mathematically defined. Nevertheless, there is no unique approach to finding all the hidden patterns in lower-level factor-graphs that correspond to high-level concepts of different natures. It is currently tackled with ad-hoc algorithms, which limits its graph expressiveness. To overcome this limitation, in this work, we propose an algorithm based on Graph Neural Networks for learning high- level semantic-relational concepts that can be inferred from the low-level factor graph. Given a set of mapped Planes our algorithm is capable of inferring Room entities relating to the Planes. Additionally, to demonstrate the versatility of our method, our algorithm can infer an additional semantic- relational concept, i.e. Wall, and its relationship with its Planes. We validate our method in both simulated and real datasets demonstrating improved performance over two baseline ap- proaches. Furthermore, we integrate our method into the S- Graphs+ algorithm providing improved pose and map accuracy compared to the baseline while further enhancing the scene representation.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > ARG - Automation & Robotics
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MILLÁN ROMERA, José Andrés  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
BAVLE, Hriday  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SHAHEER, Muhammad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Oswald, Martin R.
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Learning High-level Semantic-Relational Concepts for SLAM
Date de publication/diffusion :
2023
Nom de la manifestation :
2024 International Conference on Intelligent Robots and Systems (IROS 2024)
Organisateur de la manifestation :
IEEE/RSJ
Lieu de la manifestation :
Abu Dhabi, Emirats Arabes Unis
Date de la manifestation :
14/10/2024 - 18/10/2024
Manifestation à portée :
International
Titre du périodique :
IEEE International Conference on Intelligent Robots and Systems
ISSN :
2153-0858
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Pagination :
8
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Projet FnR :
FNR17097684 - Robotic Situational Awareness By Understanding And Reasoning, 2022 (15/09/2022-14/09/2026) - José Andrés Millán Romera
Intitulé du projet de recherche :
RoboSAUR
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
17097684/RoboSAUR
Disponible sur ORBilu :
depuis le 30 novembre 2023

Statistiques


Nombre de vues
147 (dont 13 Unilu)
Nombre de téléchargements
59 (dont 5 Unilu)

OpenCitations
 
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu