Communication publiée sur un site web (Colloques, congrès, conférences scientifiques et actes)
Graph-based Global Robot Localization Informing Situational Graphs with Architectural Graphs
SHAHEER, Muhammad; MILLÁN ROMERA, José Andrés; BAVLE, Hriday et al.
2023IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023)
Peer reviewed
 

Documents


Texte intégral
2303.02076.pdf
Postprint Auteur (2.18 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Robotics; Computer Science - Artificial Intelligence
Résumé :
[en] In this paper, we propose a solution for legged robot localization using architectural plans. Our specific contributions towards this goal are several. Firstly, we develop a method for converting the plan of a building into what we denote as an architectural graph (A-Graph). When the robot starts moving in an environment, we assume it has no knowledge about it, and it estimates an online situational graph representation (S-Graph) of its surroundings. We develop a novel graph-to-graph matching method, in order to relate the S-Graph estimated online from the robot sensors and the A-Graph extracted from the building plans. Note the challenge in this, as the S-Graph may show a partial view of the full A-Graph, their nodes are heterogeneous and their reference frames are different. After the matching, both graphs are aligned and merged, resulting in what we denote as an informed Situational Graph (iS-Graph), with which we achieve global robot localization and exploitation of prior knowledge from the building plans. Our experiments show that our pipeline shows a higher robustness and a significantly lower pose error than several LiDAR localization baselines.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > ARG - Automation & Robotics
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SHAHEER, Muhammad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
MILLÁN ROMERA, José Andrés  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
BAVLE, Hriday  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Civera, Javier
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation ; Unilu - University of Luxembourg [LU] > Faculty of Science, Technology and Medicine (FSTM), Department of Engineering
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Graph-based Global Robot Localization Informing Situational Graphs with Architectural Graphs
Date de publication/diffusion :
03 octobre 2023
Nom de la manifestation :
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023)
Organisateur de la manifestation :
IEEE
Date de la manifestation :
October 1 – 5, 2023
Manifestation à portée :
International
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR17097684 - Robotic Situational Awareness By Understanding And Reasoning, 2022 (15/09/2022-14/09/2026) - José Andrés Millán Romera
Intitulé du projet de recherche :
Robotic Situational Awareness By Understanding And Reasoning
Commentaire :
8 pages, 5 Figures, IROS 2023 conference
Disponible sur ORBilu :
depuis le 15 novembre 2023

Statistiques


Nombre de vues
165 (dont 10 Unilu)
Nombre de téléchargements
147 (dont 1 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu