Article (Périodiques scientifiques)
From SLAM to Situational Awareness: Challenges and Survey
BAVLE, Hriday; SANCHEZ LOPEZ, Jose Luis; Cimarelli, Claudio et al.
2023In Sensors, 23 (10), p. 4849
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Published.pdf
Postprint Éditeur (6.01 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Simultaneous Localization and Mapping; Scene Understanding; Scene Graphs; Mobile Robots
Résumé :
[en] The capability of a mobile robot to efficiently and safely perform complex missions is limited by its knowledge of the environment, namely the situation. Advanced reasoning, decision-making, and execution skills enable an intelligent agent to act autonomously in unknown environments. Situational Awareness (SA) is a fundamental capability of humans that has been deeply studied in various fields, such as psychology, military, aerospace, and education. Nevertheless, it has yet to be considered in robotics, which has focused on single compartmentalized concepts such as sensing, spatial perception, sensor fusion, state estimation, and Simultaneous Localization and Mapping (SLAM). Hence, the present research aims to connect the broad multidisciplinary existing knowledge to pave the way for a complete SA system for mobile robotics that we deem paramount for autonomy. To this aim, we define the principal components to structure a robotic SA and their area of competence. Accordingly, this paper investigates each aspect of SA, surveying the state-of-the-art robotics algorithms that cover them, and discusses their current limitations. Remarkably, essential aspects of SA are still immature since the current algorithmic development restricts their performance to only specific environments. Nevertheless, Artificial Intelligence (AI), particularly Deep Learning (DL), has brought new methods to bridge the gap that maintains these fields apart from the deployment to real-world scenarios. Furthermore, an opportunity has been discovered to interconnect the vastly fragmented space of robotic comprehension algorithms through the mechanism of Situational Graph (S-Graph), a generalization of the well-known scene graph. Therefore, we finally shape our vision for the future of robotic situational awareness by discussing interesting recent research directions.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > ARG - Automation & Robotics
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
BAVLE, Hriday  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Cimarelli, Claudio
TOURANI, Ali  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
From SLAM to Situational Awareness: Challenges and Survey
Date de publication/diffusion :
mai 2023
Titre du périodique :
Sensors
ISSN :
1424-8220
eISSN :
1424-3210
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Suisse
Titre particulier du numéro :
Aerial Robotics: Navigation and Path Planning
Volume/Tome :
23
Fascicule/Saison :
10
Pagination :
4849
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
URL complémentaire :
Projet FnR :
FNR13713801 - Interconnecting The Sky In 5g And Beyond - A Joint Communication And Control Approach, 2019 (01/06/2020-31/05/2023) - Bjorn Ottersten
Organisme subsidiant :
Fonds National de la Recherche (FnR) - Projects C19/IS/13713801/5G-Sky
European Commission Horizon 2020 programme
Disponible sur ORBilu :
depuis le 07 juillet 2023

Statistiques


Nombre de vues
168 (dont 7 Unilu)
Nombre de téléchargements
137 (dont 0 Unilu)

citations Scopus®
 
43
citations Scopus®
sans auto-citations
38
OpenCitations
 
2
citations OpenAlex
 
44
citations WoS
 
31

Bibliographie


Publications similaires



Contacter ORBilu