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Abstract: The capability of a mobile robot to efficiently and safely perform complex missions is
limited by its knowledge of the environment, namely the situation. Advanced reasoning, decision-
making, and execution skills enable an intelligent agent to act autonomously in unknown environ-
ments. Situational Awareness (SA) is a fundamental capability of humans that has been deeply
studied in various fields, such as psychology, military, aerospace, and education. Nevertheless, it
has yet to be considered in robotics, which has focused on single compartmentalized concepts such
as sensing, spatial perception, sensor fusion, state estimation, and Simultaneous Localization and
Mapping (SLAM). Hence, the present research aims to connect the broad multidisciplinary existing
knowledge to pave the way for a complete SA system for mobile robotics that we deem paramount
for autonomy. To this aim, we define the principal components to structure a robotic SA and their
area of competence. Accordingly, this paper investigates each aspect of SA, surveying the state-of-
the-art robotics algorithms that cover them, and discusses their current limitations. Remarkably,
essential aspects of SA are still immature since the current algorithmic development restricts their
performance to only specific environments. Nevertheless, Artificial Intelligence (AI), particularly
Deep Learning (DL), has brought new methods to bridge the gap that maintains these fields apart
from the deployment to real-world scenarios. Furthermore, an opportunity has been discovered to
interconnect the vastly fragmented space of robotic comprehension algorithms through the mecha-
nism of Situational Graph (S-Graph), a generalization of the well-known scene graph. Therefore, we
finally shape our vision for the future of robotic situational awareness by discussing interesting recent
research directions.

Keywords: simultaneous localization and mapping; scene understanding; scene graphs; mobile
robots

1. Introduction

The robotics industry is experiencing an exponential growth, embarking on newer
technological advancements and applications. Mobile robots have gained interest from
a commercial perspective due to their capabilities to replace or aid humans in repetitive
or dangerous tasks [1]. Already, many industrial and civil-related applications employ
mobile robots [2]. For example, industrial machines and underground mines’ inspections,
surveillance and road-traffic monitoring, civil engineering, agriculture, healthcare, search,
and rescue interventions in extreme environments, e.g., natural disasters, for exploration
and logistics [3].

On one hand, mobile robots can be controlled in manual teleoperation or semi-
autonomous mode with constant human intervention in the loop. Furthermore, tele-
operated mobile robots can be apprehended using applications such as augmented reality
(AR) [4], ref. [5] to enhance human–robot interactions. On the other hand, in fully au-
tonomous mode, a robot performs an entire mission based on its understanding of the
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environment given only a few commands [6]. Remarkably, autonomy reduces the costs
and risks while increasing productivity and is the goal of current research to solve the
main challenges that it raises [7]. Unlike the industrial scenario, where autonomous agents
can act in a controlled environment, mobile robots operate in the dynamic, unstructured,
and cluttered world domain with little or zero previous knowledge of the scene structure.

Up to now, the robotics community has focused chiefly on research areas such as
sensing, perception, sensor fusion, data analysis, state estimation, localization and mapping,
i.e., Simultaneous Localization and Mapping (SLAM), and Artificial Intelligence (AI)
applied to various image processing problems, in a compartmentalized manner. Figure 1
shows the mentioned targets’ data obtained from Scopus abstract and citation database.
However, autonomous behavior entails understanding the situation encompassing multiple
interdisciplinary aspects of robotics, from perception, control, and planning to human–
robot interaction. Although SA [8] is a holistic concept widely studied in fields such
as psychology, the military, and in aerospace, it has been barely considered in robotics.
Notably, Endsley [9] formally defined SA in the 1990s as “the perception of the elements in
the environment within a volume of time and space, the comprehension of their meaning and the
projection of their status shortly,” which remains valid to date [10]. Hence, we turn this
definition into the perspective of mobile robotics to derive a unified field of research that
garners all the aspects required by an autonomous system.

Figure 1. Scopus database since 2015 covering the research in Robotics and SLAM. All the works
focused on independent research areas which could be efficiently encompassed in one field of
Situational Awareness for robots.
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Therefore, a robot’s Situational Awareness (SA) system must continuously acquire
new observations of the surroundings, understand its essential elements and make complex
reasoning, and project the world state into a possible future outcome to make decisions and
execute actions that would let it accomplish its goals. Accordingly, we depict in Figure 2
a general architecture of SA that divides the specific competence areas into three layers,
with an increasing level of intelligence. Thus, we raise the following research question:

• What are the components of a robot’s situational awareness system?

Figure 2. The proposed Situational Awareness system architecture for autonomous mobile robots. We
break it into its principal components, namely perception, comprehension, and projection, and show
how they are connected.

To answer the mentioned question, we characterize SA by its three main parts,
for which we propose a description that delimits their scope and defines their purpose:

The perception of the situation consists of the acquisition of exteroceptive informa-
tion, i.e., of the surroundings, such as visual light intensity or distance, and proprioceptive
information, i.e., of the internal values of the robot, such as velocity or temperature, and in-
formation on the situation. Sensors provide raw measurements that must be transformed
to acquire actual knowledge or may directly inform the robot about its state with little
processing. For instance, active range sensors provide a distance to objects by well-defined
models. On the contrary, the pixel intensity values of a camera, other than being distorted
by unknown parameters, depend on complex algorithms to extract meaningful depth,
which is still ongoing research. Considering this, multiple sensor modalities are essential
to perceive complementary details of the situation, e.g., the acceleration of the robot and
the metric scale, the visible light intensity and its changes, and compensate for low perfor-
mance in different conditions, e.g., low light, light-transparent materials, or fast motion.
Hence, perception includes the array of sensors that give each robot specific attributes and
those algorithms that augment the amount of information at the disposal of successive
layers. Furthermore, as cameras are the predominant source of mostly latent environmental
features, image processing algorithms are necessary to gain insights into the situation from
these sensors. We include such basic algorithms, which usually require a single image
frame, into the next layer of direct comprehension.

The comprehension of the situation extends from understanding the current percep-
tion, considering the possible semantic relationships, to build a short-term understanding
using perceptual observation at a given time instant, referred to as direct situational compre-
hension, or a long-term model that includes the knowledge acquired in the past, namely,
the accumulated situational comprehension. Multiple abstract relationships can be created to
link concepts in a structured model of the situation, such as geometric (e.g., the shape of
the objects), semantic (e.g., the type and functionality of the objects), topological (e.g., the
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order in the space), ontological (e.g., the hierarchy of commonsense concepts), dynamic
(e.g., the motion between the objects), or stochastic (e.g., to include uncertainty informa-
tion). In addition, the comprehension of the situation is affected by mechanisms such as
attention that are controlled by the decision-making and control processes (e.g., looking for
a particular object in a room vs. getting a global overview of a room).

The projection of the situation into the future is essential for decision-making pro-
cesses, and a higher level of comprehension facilitates this ability. A more profound un-
derstanding of the environmental context, which includes information such as the robot’s
position, velocity, pose, and any static or dynamic obstacles in the surrounding area, can
lead to a more accurate projection model. The projection process involves forecasting the
future states of both the ego-agent and external agents to predict behaviors and interactions,
enabling the robot to adapt its actions to achieve its goals effectively.

The rest of this paper aims to delve into those research questions naturally developed
as a consequence of the exposed SA topic:

• What has been achieved so far, and what challenges remain?
• What could the future direction of Situational Awareness be?

Thus, by reviewing the current state-of-the-art methods for mobile robots that may
fall into perception, comprehension, and projection, we aim to study the broad field of
Situational Awareness as one and understand the advancement and limitations of its
components. Then, we discuss in which direction we envision the research will address
the remaining challenges and bridge the gap that divides robots from mature, intelligent
autonomous systems.

We summarize the main contributions of this paper as:

• Comprehensive review of the state-of-the-art approaches: we conduct a thorough
analysis of the latest research related to enhancing situational awareness for mobile
robotic platforms, covering computer vision, deep learning, and SLAM techniques.

• Identification and analysis of the challenges: we classify and discuss the reviewed
approaches according to the proposed definition of situational awareness for mobile
robots and highlight their current limitations for achieving complete autonomy in
mobile robotics.

• Proposals for future research directions: we provide valuable insights and suggestions
for future research directions and open problems that need to be addressed to develop
efficient and effective situational awareness systems for mobile robotic platforms.

2. Situational Perception

Situational perception enables robots to perceive their known state as well as the
situation around them using a single or a combination of onboard proprioceptive and exte-
roceptive sensors. The continuous technological advances regarding chip developments
have made many sensors suited for use onboard mobile robots [11], as they come with
a small form factor and possibly low power consumption. The primary sensor suite of
the average robot can count on a wide array of devices, such as Inertial Measurement
Units (IMUs), magnetometers, barometers, and Global Navigation Satellite Systems (GNSS)
receivers, e.g., for the typical Global Positioning System (GPS) satellite constellation. Sen-
sors such as IMUs, which can be utilized by robotic platforms to measure their attitude,
angular velocities, and linear accelerations, are cheap and lightweight, making them ideal
for running onboard the platforms, though the performance of these sensors can degrade
over time due to the accumulation of errors coming from white Gaussian noise [12]. Magne-
tometers are generally integrated within an IMU sensor, measuring the accurate heading of
the robotics platform relative to the Earth’s magnetic field. The sensor measurements from
a magnetometer can be corrupted when the robot navigates in environments with constant
magnetic fields interfering with the Earth’s magnetic field. Barometers can be utilized by
flying mobile robots to measure their altitude changes through measured pressure changes,
but they suffer from bias and random noise in measurements in indoor environments due
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to ground/ceiling effects [13]. Wheel encoders are utilized by ground mobile robots to
measure the velocities of the platform and obtain its relative position. GNSS receivers,
as well as their higher-precision variants, such as Real-Time Kinematic (RTK) or differential
GNSS, provide reliable position measurements of robots in a global frame of reference
relative to the Earth in outdoor environments. However, these sensors can work reliably in
uncluttered outdoor environments with multiple satellites connected or within a direct line
of sight with the RTK base station [14].

The adoption of cameras as exteroceptive sensors in robotics has become increasingly
prevalent due to their ability to provide a vast range of information in a compact and
cost-effective manner [15]. In particular, RGB cameras, including monocular cameras, have
been widely used in robotics as primary sensor as it provides the robots with colored
images which can be further processed to extract meaningful information from their
environment. Additionally, cameras with depth information, such as stereo or RGB-D
cameras, have emerged as a dominant sensor type in robotics given that they provide the
robot with additional capabilities of perceiving the depth of the different objects within
the environment. As such, the use of standard cameras is expected to continue playing a
crucial role in developing advanced robotic systems. These standard cameras suffer from
the disadvantage of motion blur in the presence of a rapid motion of the robot, and the
perceived quality can degrade as the robot navigates in changing lighting conditions.

In robotics, RGB and RGB-D (i.e., with depth) cameras are thus complemented by
infrared (IR) cameras, also referred to as thermal cameras when detecting long-wave
radiation, for gaining extended visibility during nighttime or adverse weather conditions.
These sensors can provide valuable information not detectable by human eyes or traditional
cameras, such as heat signatures and thermal patterns. By incorporating thermal and IR
cameras into the sensor suite, mobile robots can detect and track animated targets by
following heat signatures, and navigating low-visibility environments, thus operating in a
broader range of conditions. These specialized sensors can significantly enhance a robotic
system’s situational awareness and overall performance.

Neuromorphic vision sensors [16], also known as event cameras [17], such as the
Dynamic Vision Sensor (DVS) [18], overcome the limitations of standard cameras by encod-
ing pixel intensity changes rather than an absolute brightness value and providing very
high dynamic ranges as well as no motion blur during rapid motions. However, due to the
asynchronous nature of event cameras, measurements of the situations are only provided
in case of variations in the perceived scene brightness that are often caused by the motion of
the sensor itself. Hence, they can measure a sparse set of points, usually in correspondence
with edges. To perceive a complete dense representation of the environment, such sensors
onboard mobile robots are typically combined with the traditional pixels of RGB cameras,
as in the case of the Dynamic and Active-Pixel Vision Sensor (DAVIS) [19] or Asynchronous
Time-Based Image Sensor (ATIS) [20] cameras. Nevertheless, algorithms have also been
proposed to reconstruct traditional intensity frames by integrating events over time to
facilitate the reuse of preexisting image processing approaches [21] or even produce a
high-frame-rate video by interpolating new frames [22].

Ranging sensors, such as small-factor solid-state Light Detection and Rangings (LIDARs)
or ultrasound sensors, are the second most dominant group of employed exteroceptive sensors
onboard mobile robots. One-dimensional LIDARs and ultrasound sensors are used mainly
in flying mobile robots to measure their flight altitude but only measure limited information
about their environments, while ground mobile robots can utilize the sensor to measure the
distance to nearest object. Two- and three-dimensional LIDARs accurately perceive the
surroundings in 360°, and the newer technological advancements have reduced their size
and weight. However, utilizing these sensors onboard small-sized robotic platforms is still
not feasible, and the high acquisition cost hampers the adoption of this sensor by the broad
commercial market. Even for autonomous cars, a pure-vision system, which may include
event cameras, is often more desirable from an economic perspective.
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Frequency-modulated continuous wave (FMCW) radio detection and ranging (RADAR)
systems transmit a continuous waveform with a changing frequency over time. This changing
frequency creates a frequency sweep, or chirp, continuously transmitted and reflected off
objects in the radar’s field of view. An FMCW radar can determine the detected objects’
range, velocity, and angle by measuring the frequency shift between the transmitted and
received signals. Millimeter-wave (mmWave) radars use short-wavelength electromagnetic
waves in the GHz range to obtain millimeter accuracy and are a valid alternative to LIDAR
for range measurements in robotics [23]. Even though they have a lower angular resolution
and more limited range than LIDAR, they offer a smaller form factor and a lower cost.
Additionally, they can estimate the speed of objects by leveraging the Doppler effect.
Nevertheless, mmWave radars can detect transparent surfaces that are challenging to see
with LIDAR. As such, they have become an attractive option for robotic applications where
cost, form factor, and the detection of transparent surfaces are crucial.

A Radiofrequency (RF) signal is another technology based on signal processing that
allows a robot to infer its global position by estimating its distance with one or multiple base
stations. Differently from GPS, RF signals may be able to provide positioning information
in indoor environments as well, even though range measurements require it to be fused
with other sources of motion estimation, e.g., from an IMU. Contrary to mmWave radars,
RF-based localization or mapping is far less precise, but newer technology such as 5G
promises superior performance. However, a drawback of these approaches is that they
require synchronization between the antenna and the receiver for computing a time of
arrival (TOA) and possibly line-of-sight (LOS) communication, especially when only one
antenna is available. Other RF measurements, such as the time difference of arrival (TDOA),
allow the release of the synchronization requirement or the computation of the position in a
non-line-of-sight (NLOS) scenario by extracting information from matrices of channel state
information (CSI). Kabiri et al. [24] provide an exhaustive review of RF-based localization
methods and give an outlook on current challenges and future research directions.

Table 1 summarizes the different sensors used onboard mobile robots with their
individual limitations. Given the multifaceted characteristics of the available sensors,
relying on a monomodal perception does not guarantee a safe robot deployment in real-
world settings. Consequently, multimodal perception is often preferred at the cost of
more complex solutions to properly fuse and time-synchronize the measurements from
multiple sensors. Nevertheless, it is essential to perceive complementary information of the
situation and to build a complete state of the autonomous agent, e.g., the acceleration of a
robot, the visual light intensity of the environment, its global position, or the distance with
obstacles, and compensate for low performance in different conditions, e.g., dark rooms or
low-light, transparent materials, or non-Lambertian surfaces.
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Table 1. Different types of sensors utilized onboard mobile robots for situational perception.

Classification Sensor Measurement Mobile Robotic Platforms Limitations Examples

Proprioceptive

IMU • Velocities
• Accelerations
• Yaw angle (with a

magnetometer)

Indoor/outdoor robots • Bias
• Gaussian noise
• Drifts rapidly

MPU-6050

GPS • Absolute position Outdoor robots • Unreliable measurements in cluttered
environments.

u-blox NEO-M8N

Barometer • Altitude from atmospheric
pressure

Indoor/outdoor aerial robots • Bias
• Gaussian noise

Bosch BMP280

Robot encoders • Relative position
• Velocity

Indoor/outdoor ground robots • Slippage
• Error accumulation

US Digital E4P

RF Receiver • Absolute position Indoor/outdoor robots • Prone to interference
• Limited range

DecaWave
DWM1000

Exteroceptive

RGB camera • Visible light Indoor/outdoor robots • Motion blur
• Degradation in poor light conditions

IDS uEye LE

RGB-D Camera • Visible light
• Depth from IR structured light

Indoor/outdoor robots • Limited and noisy range
• Errors in reflective/transparent surfaces

Intel Realsense
D435

IR Camera • Infrared radiation Indoor/outdoor robots • Limited information
• Prone to atmospheric interference
• Infrared cannot pass through glass or water

FLIR Lepton

Event camera • Brightness log-intensity
changes

Indoor/outdoor robots • Requires motion of camera or objects
• Absolute brightness not measured directly
• Not easy to purchase

DAVIS 346 or
SONY IMX636ES

LIDAR • Metric distances and angle of
scene points

Indoor/outdoor robots • Prone to atmospheric interference
• Degradation in reflective and transparent surfaces

Velodyne VLP-16

MmWave FMCW
RADAR

• Metric distances and angle of
scene points

• Objects’ speed

Indoor/Outdoor Robots • Limited range and field of view
• Possible low angular and distance resolution
• Multipath propagation effect and ghost targets

AWR6843AOP
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The traditional approach to designing robots involves tailoring their sensor selection
and configuration to the specific task they are intended to perform. However, this approach
may not be sufficient for a humanlike perception capable of adapting to diverse external
situations. To overcome this limitation, it is necessary to equip robots with a standard,
versatile sensor suite that can provide detailed and accurate information about their sur-
roundings and dynamic elements. This sensor suite, coupled with advanced processing
algorithms (explained in Sections 3 and 4), can enable robots to perceive their environment
like humans, irrespective of the application they are designed for.

3. Direct Situational Comprehension

Some research works focus on transforming the complex raw measurements provided
by sensors into more tractable information with different levels of abstraction, i.e., feature
extraction for an accurate scene understanding, without building a complex long-term
model of the situation. Table 2 provides a summary of the presented direct comprehension
methods with their key limitations while using onboard mobile robots. Direct situational
comprehension based on sensor modalities can be divided into two main categories, as de-
scribed below.

3.1. Monomodal

These algorithms utilize a single sensor source to extract useful environmental in-
formation. The two primary sensor modalities used in robotics are vision-based sensors
and range-based sensors for the rich and plentiful amount of information in their scene
observations.

Vision-based comprehension started with the early works of Viola and Jones [25]
presenting an object-based detector for face detection using Haar-like features and Ad-
aboost feature classification. Following works for visual detection and classification tasks
such as [26–30] utilized well-known image features, e.g., Scale-Invariant Feature Trans-
form (SIFT) [31], Speeded-Up Robust Features (SURF) [32], Histogram of Oriented Gra-
dients (HOG) [33], along with Support Vector Machine (SVM)-based classifiers [34]. The
mentioned methods focused on extracting only a handful of helpful information from the
environment, such as pedestrians, cars, and bicycles, showing degraded performance in
difficult lighting conditions and occlusions.
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Table 2. Summary of the algorithms for the direct situational comprehension SA module. DL refers
to methods leveraging deep learning.

Modality Sensor Method DL Limitations References

Monomodal

RGB

Feature detection 7 • Sensitive to illumination changes
• Higher false positives
• Lower robustness in the presence of

occlusions

[25–34]

Object detection 3 • Higher computation cost
• Larger training dataset
• Sensitive to occlusions
• No instance segmentation

[35]

Semantic segmentation 3 • Higher computation cost
• Larger training dataset
• No instance segmentation

[36–44]

Panoptic segmentation 3 • Higher computation cost
• Larger training dataset
• Slower inference time

[45,46]

2D Scene graphs 3 • Limited to 2D spatial information
• Limited temporal information

[47–49]

Thermal

Object detection 7 • Limited applicability
• Higher false positives

[50]

Object detection 3 • Limited applicability
• Limited datasets

[51,52]

Event

Object detection 3 • Trained over limited data
• Limited validation in the presence of

occlusions

[53,54]

Semantic segmentation 3 • Trained over limited data
• Limited to only a few semantic objects

[54]

LIDAR

Object detection 7 • Detection of fewer semantic entities
• Lower robustness in the presence of

outliers and occlusions

[55–57]

Semantic segmentation 3 • Limited to fewer semantic entities
• Higher computational cost
• Lower accuracy in indoor environments

[58–66]

Multimodal

RGB + Depth

Object detection 7 • Higher false positives and negatives
• Limited range

[67,68]

Object detection 3 • Limited range and limited to low-range
applications

• High computation cost
• Lower inference time
• Lack of generalizability over nontrained

semantic entities

[69–73]

RGB +
Thermal

Semantic Segmentation 3 • Limited real world testing
• Mostly limited to outdoor environments
• Lower object detection accuracy

[74–77]

RGB + Event Semantic segmentation 3 • Tested only on outdoor datasets [78]

RGB + LIDAR
Object detection 3 • Limited accuracy in indoor environments

• No temporal history of detected objects
for efficient tracking

[79–83]

With the establishment of DL in computer vision and image processing for robot
vision, recent algorithms in the literature robustly extract the scene information utilizing
Convolutional Neural Networks (CNNs) in the presence of different lighting conditions
and occlusions. In computer vision, different types of DL-based methods exist based on the
kind of scene-extracted information. Algorithms such as Mask-RCNN [36], RetinaNet [37],
TensorMask [38], TridentNet [39], and Yolo [35] perform detection and classification of several
object instances, and they either provide a bounding box around the object or perform
a pixelwise segmentation for each object instances. Other algorithms such as [40–44]
perform a dense semantic segmentation, being able to extract all relevant information
from the scene. Additionally, Kirillov et al. [45], Cheng et al. [46] aimed to detect and
categorize all object instances in an image, regardless of their size or position, through a
panoptic segmentation while still maintaining a semantic understanding of the scene. This
task is particularly challenging because it requires integrating pixel-level semantics and
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instance-level information. Figure 3 showcases different image segmentation algorithms.
Two-dimensional scene graphs [47,48] could then connect the semantic elements detected by
the panoptic segmentation in a knowledge graph that let one reason about relationships.
Moreover, this knowledge graph facilitates the inference of single behaviors and interactions
among the participants in a scene, animate or inanimate [49].

Figure 3. Deep-learning-based computer vision algorithms for monomodal scene understanding.
Copyright to [84].

To overcome the limitations of the visible spectrum in the absence of light, thermal
infrared sensors have been researched to augment situational comprehension. For instance,
one of the earlier methods [50] found humans in nighttime images by extracting thermal
shape descriptors that were then processed by Adaboost to identify positive detection. In
contrast, newer methods [51,52] utilize deep CNNs on thermal images for identifying
different objects in the scene, such as humans, bikes, and cars. Though research in the
field of event-based cameras for scene understanding is not yet broad, some works such
as [85] present an approach for dynamic object detection and tracking using event streams,
whereas [53] present an asynchronous CNN for detecting and classifying objects in real
time. Ev-SegNet [54] is an approach that introduced one of the first semantic segmentation
pipelines based on event-only information.

Range-based comprehension methods with earlier works such as [55] and ref. [56]
presented object detection for range images from 3D LIDAR using an SVM for object clas-
sification. However, the authors in [57] utilized range information to identify the terrain
around the robot and objects and used an SVMs to classify each category. Nowadays,
deep learning is also playing a fundamental role in scene understanding using range in-
formation. Some techniques utilize CNNs for analyzing range measurements translated
into camera frames by projecting the 3D points onto an abstract image plane. For exam-
ple, Rangenet++ [58,59], SqueezeSeg [60], and SqueezeSegv2 [61] project the 3D point-cloud
information onto 2D range-based images for performing the scene understanding tasks.
The above-mentioned methods argue that CNN-based algorithms can be directly applied
to range images without using expensive 3D convolution operators for point cloud data.
Others apply CNNs directly on the point cloud information for maximizing the preserva-
tion of spatial information. Approaches such as PointNet [62] (Figure 4a), PointNet++ [63],
TangentConvolutions [64], DOPS [65], and RandLA-Net [66] perform convolutions directly
over the 3D point cloud data to semantically label the point cloud measurements.

3.2. Multimodal

The fusion of multiple sensors for situational comprehension allows algorithms to
increase their accuracy by observing and characterizing the same environment quantity but
with different sensor modalities [86]. Algorithms combining RGB and depth information
have been widely researched due to the easy availability of the sensors publishing RBG-D
information. González et al. [67] studied and presented the improvement of the fusion of
multiple sensor modalities (RGB and depth images), numerous image cues, and various
image viewpoints for object detection, whereas Lin et al. [68] combined 2D segmentation
and 3D geometry understanding methods to provide contextual information for classi-
fying the categories of the objects and identifying the scene in which they are placed.
Several algorithms classifying and estimating the pose of objects using CNNs, such as [69],
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PoseCNN [70], DenseFusion [71–73], rely extensively on RBG-D information. These methods
are primarily employed for object manipulation tasks, using robotic manipulators fixed on
static platforms or mobile robots.

(a) (b)

Figure 4. Monomodal and multimodal scene understanding algorithms, (a) PointNet algorithm using
only LIDAR measurements. Copyright to [62]. (b) Frustrum PointNets algorithm combining RGB and
LIDAR measurements improving the accuracy of PointNet. Copyright to [79].

Alldieck et al. [87] fused RGB and thermal images from a video stream using contextual
information to access the quality of each image stream to combine the information from
the two sensors accurately, whereas methods such as MFNet [74], RTFNet [75], PST900 [76],
and FuseSeg [77] combined the potential of RGB images along with thermal images using
CNN architectures for the semantic segmentation of outdoor scenes, providing accurate
segmentation results even in the presence of degraded lighting conditions. Zhou et al. [88]
proposed ECFFNet to perform the fusion of RGB and thermal images at the feature level,
which provided complementary information, effectively improving object detection in
different lighting conditions. Spremolla et al. [89], Mogelmose et al. [90] performed a fusion
of RGB, depth, and thermal camera computing descriptors in all three image spaces and
fused them in a weighted average manner for efficient human detection.

Dubeau et al. [91] fused the information from an RGB and depth sensor with an event-
based camera cascading the output of a deep Neural Network (NN) based on event frames
with the output from a deep NN for RBG-D frames for a robust pose tracking of high-speed
moving objects. ISSAFE [78] is another approach that combines event-based CNN with an
RGB-based CNN using an attention mechanism to perform semantic segmentation of a
scene, utilizing the event-based information to stabilize the semantic segmentation in the
presence of high-speed object motions.

To improve situational comprehension using 3D point cloud data, methods have been
presented that combine information extracted over RGB images with their 3D point cloud
data to accurately identify and localize the objects in the scene. Frustrum PointNets [79]
(Figure 4b) performed 2D detection over RGB images which were projected to a 3D viewing
frustum from which the corresponding 3D points were obtained, to which a PointNet [62]
(Figure 4a) was applied for object instance segmentation, and an amodal bounding box
regression was performed. Methods such as AVOD [80,81] extract features from both RGB
and 3D point clouds projected to a bird’s eye view and fuse them to provide 3D bounding
boxes for several object categories. MV3D [82] extract features from RGB images and
3D point cloud data from the front view as well as a bird’s eye view to fuse them in a
Region of Interest (RoI) pooling, predicting the bounding boxes as well as the object class.
PointFusion [83] employs an RGB and 3D point cloud fusion architecture which is unseen
and object-specific and can work with multiple sensors providing depth.

Direct situational comprehension algorithms only provide the representation of the
environment at a given time instant and mostly discard the previous information, not
creating a long-term map of the environment. In this regard, the extracted knowledge can
thus be transferred to the subsequent layer of accumulated situational comprehension.

4. Accumulated Situational Comprehension

A greater challenge consists of building a long-term multiabstraction model of the
situation, including past information. Even small errors not considered at a particular time
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instant can cause a high divergence between the state of the robot and the map estimate
over time. To simplify the explanation, we divided this section into three subsections,
namely, motion estimation, motion estimation and mapping, and mapping.

4.1. Motion Estimation

The motion estimation component is responsible for estimating the state of the robot
directly, using the sensor measurements from single/multiple sources and the inference
provided by the direct situational comprehension component (see Section 3.1). While some
motion estimation algorithms only use real-time sensor information to estimate the robot’s
state, others estimate the robot’s state inside a pregenerated environment map. Early
methods estimated the state of the robot based on filtering-based sensor fusion techniques
such as an Extended Kalman Filter (EKF), an Unscented Kalman Filter (UKF), and Monte Carlo
Localization (MCL). Methods such as those in [92,93] use MCL, providing a probabilistic
hypothesis of the state of the robot directly, using the range measurements from a range
sensor. Anjum et al. [94] performed a UKF based fusion of several sensor measurements
such as gyroscopes, accelerometers, and wheel encoders to estimate the motion of the robot.
Kong et al. [95], Teslic et al. [96] performed an EKF based fusion of odometry from robot
wheel encoders and measurements from a prebuilt map of line segments to estimate the
robot state, whereas Chen et al. [97] used a prebuilt map of corner features. Ganganath and
Leung [98] presented both UKF and MCL approaches for estimating the pose of the robot
using wheel odometry measurements and a sparse prebuilt map of visual markers detected
with an RGB-D camera. In contrast, Kim and Kim [99] presented a similar approach using
ultrasound distance measurements with respect to an ultrasonic transmitter.

The simplified mathematical models are subject to several assumptions that limited ear-
lier motion estimation methods. Newer methods try to improve these limitations by provid-
ing mathematical improvements over the earlier methods and accounting for delayed mea-
surements between different sensors, such as the UKF developed by Lynen et al. [100] and
the EKF by Sanchez-Lopez et al. [101], which compensate for time-delayed measurements
in an iterative nature for a quick convergence to the actual state. Moore and Stouch [102]
presented an EKF/UKF algorithm, well-known in the robotics community, which can take
an arbitrary number of heterogeneous sensor measurements for the estimation of the robot
state. Wan et al. [103] used an improved version of a Kalman filter called the error-state
Kalman filter, which used measurements from RTK GPS, LIDAR, and IMU for a robust state
estimation. Liu et al. [104] presented a multi-innovation UKF (MI-UKF), which utilized a
history of innovations in the update stage to improve the accuracy of the state estimate; it
fused IMU, encoder, and GPS data and estimated the slip error components of the robot.

The motion estimation of robots using a Moving-Horizon Estimation (MHE) has also
been studied in the literature where methods such as in [105] fuse wheel odometry and
LIDAR measurements using an MHE scheme to estimate the state of the robot, claiming a ro-
bustness over any outliers in the LIDAR measurements. Liu et al. [106], Dubois et al. [107]
studied a multirate MHE sensor fusion algorithm to account for sensor measurements
obtained at different sampling rates. Osman et al. [108] presented a generic MHE-based
sensor fusion framework for multiple sensors with different sampling rates, compensating
for missed measurement, outlier rejection, and satisfying real-time requirements.

Recently, motion estimation algorithms of mobile robots using factor-graph-based
approaches have also been extensively studied as they have the potential to provide a
higher accuracy. Factor graphs can encode either the entire history of the robot state
or go back up to a fixed time, i.e., fixed-lag smoothing methods, capable of handling
different sensor measurements in terms of nonlinearity and varying frequencies optimally
and intuitively (see Figure 5). Ranganathan et al. [109] presented one of the first graph-
based approaches using square-root fixed-lag smoothing [110], for fusing information from
odometry, visual, and GPS sensors, whereas Indelman et al. [111] presented an improved
fusion based on an incremental smoothing approach, iSAM2 [112], fusing IMU, GPS and
visual measurements from a stereocamera setup. The methods presented in [113,114]
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utilized sliding-window factor graphs for estimating the robot’s state by fusing several
wheel odometry sources along with global pose sources. Mascaro et al. [115] also presented
a sliding-window factor graph combining visual odometry information, IMU, and GPS
information to estimate the drift between the local odometry frame with respect to the
global frame, instead of directly estimating the robot state. Qin et al. [116] presented a
generic factor graph-based framework for fusing several sensors. Each sensor served as a
factor connected with the robot’s state, quickly adding them to the optimization problem.
Li et al. [117] proposed a novel graph-based framework for sensor fusion that combined
data from a stereo visual–inertial navigation system, i.e., S-VINS, and multiple GNSS
sources in a semitightly coupled manner. The S-VINS output was an initial input to the
position estimate derived from the GNSS system in challenging environments where GNSS
data are limited. By integrating these two data sources, the framework improved the robot’s
global pose estimation accuracy.

The motion estimation algorithms, as illustrated in Figure 5, do not simultaneously
create a map of the environment, limiting their environmental knowledge, which has led
to research on simultaneous motion estimation and mapping algorithms described in the
following subsection.

Figure 5. Localization factor graph used for estimating the robot state fusing multiple sensor mea-
surements. Copyright to [116].

4.2. Motion Estimation and Mapping

This section covers the approaches which estimate not only the robot motion given
the sensor measurements but also the map of the environment, i.e., they model the scene in
which the robot navigates. These approaches are commonly known as SLAM, which is one
the widely researched topics in the robotics industry [118], as it enables a robot to use scene
modeling without the requirement of prior maps and in applications where initial maps
cannot be obtained easily. Vision and LIDAR sensors are the two primary exteroceptive
sensors used in SLAM for map modeling [15,119]. As in the case of motion estimation
methods, SLAM can be performed using a single-sensor modality or using information
from different sensor modalities and combining it with scene information extracted from
the direct situational comprehension module (see Section 3). SLAM algorithms have a subset
of algorithms that do not maintain the entire map of the environment and do not perform
stages of loop closure called odometry estimation algorithms, where Visual Odometry (VO)
becomes a subset of visual SLAM (VSLAM) and LIDAR odometry a subset of LIDAR SLAM.
Tables 3 and 4 provide a brief summary of the above-presented approaches highlighting
the different datasets used in their validation along with their limitations.

4.2.1. Filtering

Earlier SLAM approaches such as in [120–122] applied an EKF to estimate the robot
pose by simultaneously adding/updating the landmarks observed by the robots. However,
these methods were quickly discarded as their computational complexity increased with the
number of landmarks, and they did not efficiently handle nonlinear measurements [123].
Accordingly, FastSLAM 1.0 and FastSLAM 2.0 [124] were proposed as improvements to
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EKF-SLAM, which combined particle filters to calculate the trajectory of the robot with
individual EKFs for landmark estimation. These techniques also suffered from the limita-
tions of sample degeneracy when sampling the proposal distribution and problems with
particle depletion.

4.2.2. Metric Factor Graphs

Modern SLAM, as described in [118], has moved to a more robust and intuitive
representation of the state of the robot along with sensor measurements, as well as the
environment map to create factor graphs as presented in [110,112,125–127]. Factor-graph-
based SLAM, based on the type of map used for the environmental representation and
optimization, can be divided into metric and metric–semantic factor graphs.

A metric map encodes the understanding of the scene at a geometric level (e.g., lines,
points, and planes), which is utilized by a SLAM algorithm to model the environment. Par-
allel tracking and mapping (PTAM) was one of the first feature-based monocular algorithms
which split the tracking of the camera in one thread and the mapping of the key points in
another, performing a batch optimization for optimizing both the camera trajectory and
the mapped 3D points. Similar extensions to the PTAM framework are ORB-SLAM [128]
and REMODE [129] which create a semidense 3D geometric map of the environment
while estimating the camera trajectory. As an alternative to feature-based methods, direct
methods use the image intensity values instead of extracting features to track the camera
trajectory even in featureless environments such as semidense direct VO, called DSO [130]
and LDSO [131], improving the DSO by adding loop closure into the optimization pipeline,
whereas LSD-SLAM [132], DPPTAM [133], and DSM [134] perform a direct monocular
SLAM tracking camera trajectory along with building a semidense model of the environ-
ment. Methods have also been presented that combine the advantages of both feature-based
and intensity-based methods, such as SVO [135] performing high-speed semi-direct VO,
CPA-SLAM [136], and loosely coupled semidirect SLAM [137] utilizing image intensity values
for optimizing the local structure and image features to optimize the key-frame poses.

Deep Learning models may be used effectively to learn from data to estimate the
motion from sequential observations. Hence, their online prediction could be better before
initializing the factor-graph optimization problem closer to the correct solution [138,139].
MagicVO [140] and DeepVO [141] study supervised end-to-end pipelines to learn monocular
VO from data not requiring complex formulations and calculations for several stages, such
as feature extraction and matching, keeping the VO implementation concise and intuitive.
There are also some supervised approaches such as LIFT-SLAM [142], RWT-SLAM [143],
and [144,145] that utilize deep neural networks for improved feature/descriptor extraction.
Alternatively, unsupervised approaches [146–148] exploit the brightness constancy assump-
tion between frames in close temporal proximity to derive a self-supervised photometric
loss. The methods have gained momentum, enabling the learning from unlabeled videos
and continuously adapting the DL models to newly seen data [149,150]. Nevertheless,
monocular visual-only methods suffer from the considerable limitation of being unable to
estimate the metric scale directly and accurately track the robot poses in the presence of
pure rotational or rapid/acrobatic motion. RAUM-VO [151] mitigates the rotational drift by
integrating an unsupervised learned pose with the motion estimated with a frame-to-frame
epipolar method [152].

To overcome these limitations, cameras are combined with other sensors, for ex-
ample, synchronizing them with an IMU, giving rise to the research line working on
monocular Visual–Inertial Odometry (VIO). Methods such as OKVIS [153], SVO-Multi [154],
VINS-mono [155], SVO+GTSAM [156], VI-DSO [157], BASALT [158] are among the most
outstanding examples. Delmerico and Scaramuzza [159] benchmarked all the open-source
VIO algorithms and compared their performance on computationally demanding embed-
ded systems. Furthermore, VINS-fusion [160] and ORB-SLAM2 [161] (see Figure 6a) provide
a complete framework capable of fusing either monocular, stereo, or RGB-D cameras with an
IMU to improve the overall tracking accuracy of the algorithms. ORB-SLAM3 [162] presents
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improvement over ORB-SLAM2 by performing even multimap SLAM using different visual
sensors along with an IMU.

Methods have been presented that perform thermal inertial odometry for perform-
ing autonomous missions using robots in visually challenging environments [163–166].
The authors in TI-SLAM [167] not only performed thermal inertial odometry but also
provided a complete SLAM back end with thermal descriptors for loop closure detec-
tion. Mueggler et al. [168] presented a continuous-time integration of event cameras with
IMU measurements, improving by almost a factor of four the accuracy over event-only
EVO [169]. Ultimate SLAM [170] combines RGB cameras with event cameras along with
IMU information to provide a robust SLAM system in high-speed camera motions.

LIDAR odometry and SLAM for creating metric maps have been widely researched
in robotics to create metric maps of the environment such as Cartographer [171] and Hector-
SLAM [172], performing a complete SLAM using 2D LIDAR measurements, and LOAM [173]
and FLOAM [174] providing a parallel LIDAR odometry and mapping technique to simul-
taneously compute the LIDAR velocity while creating accurate 3D maps of the environ-
ment. SUMA [175] improves the performance over LOAM using dense projective ICP
over surfel-based maps. To further improve the accuracy, techniques have been presented
which combine vision and LIDAR measurement as in LIDAR-monocular visual odometry
(LIMO) [176] and LVI-SLAM [177], combining monocular image tracking with precise depth
estimates from LIDAR measurements for motion estimation. Methods such as LIRO [178]
and VIRAL-SLAM [179] couple additional measurements such as ultrawide band (UWB)
with visual and IMU sensors for robust pose estimation and map building. Other meth-
ods such as HDL-SLAM [180] and LIO-SAM [181] tightly couple IMU, LIDAR, and GPS
measurements for globally consistent maps.

While significant progress has been demonstrated using metric SLAM techniques, one
of the limitations of these methods is the lack of information extracted from the metric
representation, such as (1) a lack of semantic knowledge of the environment, (2) an inefficiency
in identifying static and moving objects, and (3) an inefficiency in distinguishing different object
instances.

(a) (b)

Figure 6. (a) Three-dimensional feature map of the environment created using ORB-SLAM2. Copy-
right to [161]. (b) The same environment is represented with a 3D semantic map using SUMA++,
providing richer information to better understand the environment around the robot. Copyright
to [182].
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Table 3. Summary of the significant VSLAM validated over public datasets.
.

Classification Sensors Method Dataset Limitations

Metric
factor graphs

• RGB (Mono) ORB-SLAM [128] The New College
Dataset [183]

• Difficulty in estimating pure rotations
• Higher error in low-texture

environment
• Suffer from motion bias
• Scale uncertainty

DSO [157],
LDSO [131]

TUM RGB-D [184],
TUM-Mono [185],
EuRoC Mav [186], Kitti
Odometry [187]

• Require constant illumination
• Require photometric calibration for

improved results
• Scale uncertainty

LSD-SLAM [132],
DPPTAM [133]

TUM RGB-D [184]

DSM [134] EuRoC Mav [186]

Semi-Direct
VO [137]

EuRoC Mav [186], TUM
Mono [185]

• Require accurate initialization
• Scale uncertainty

MagicVO [140],
DeepVO [141]

Kitti Odometry [187] • Higher computational resources
• Less accurate than the classical VO

counterparts

• RGB (mono)
• RGB (stereo)
• RGB-D

ORB-SLAM2 [161] TUM RGB-D [184],
EuRoC Mav [186], Kitti
Odometry [187]

• Lower accuracy in high-speed
motions

• Lower accuracy in low-feature,
low-lighting environments

• Erroneous loop closures in
low-feature/similar environments

• RGB (mono)
• RGB (stereo)
• RGB-D
• RGB + IMU

ORB-SLAM3 [162] TUM VI [188], EuRoC
Mav [186]

• Lower accuracy in low-feature,
low-lighting environments

• Erroneous loop closures in
low-feature/similar environments

• RGB + IMU VINS-Mono [160] EuRoC Mav [186] • Requires good initial estimate
• Lower accuracy in low-feature,

low-lighting environments

SVO-Multi [154] EuRoC Mav [186], TUM
RGB-D [184],
ICL-NUIM [189]

• Requires robust initialization
• Flat ground plane assumption

causing inaccuracies over nonplanar
surfaces

• RGB-D CPA-SLAM [136] TUM RGB-D [184],
ICL-NUIM [189]

• Lower accuracy in case of inaccurate
planar detection

Metric–semantic
factor graphs

• RGB (Mono) Monocular Object
SLAM [190]

TUM RGB-D [184] • Pregenerated object database

QuadricSLAM [191] TUM RGB-D [184] • Assumption of scene representation
as quadrics

• Quadric computation
computationally expensive

• Scale uncertainty

CubeSLAM [192] TUM RGB-D [184],
ICL-NUIM [189]

• Lower accuracy in case of higher
errors in cuboid detection

• Scale uncertainty

• RGB (Mono)
• RGB (Stereo)
• RGB-D

DynaSLAM [190] TUM RGB-D [184], Kitti
Odometry [187]

• Filter out useful dynamic key points
• No topological relationships between

the dynamic–static entities

• RGB-D VDO-SLAM [193] Kitti Odometry [187],
Oxford
Multimotion [194]

• No topological relations between the
dynamic–static entities in the
optimization graph

• RGB (Stereo)
+ IMU

Kimera [195] EuRoC Mav [186] • Computationally expensive planar
mesh generation

• No topological constraints between
the semantic entities
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Table 4. Summary of the significant LIDAR-based SLAM validated over public datasets.
.

Classification Sensors Method Dataset Limitations

Metric
Factor Graphs

• LIDAR (2D) Cartographer [171] Deutsches
Museum [171]

• Scan matching can present inaccuracies
in cluttered/dynamic environments

• Loop closure can present inaccuracies in
environments with similar structure

• LIDAR (3D) LOAM [173],
FLOAM [174]

Kitti [187] • Inaccuracies in nonstructured
environments (without planar/edge
features)

• Inaccuracies in the presence of dynamic
objects

• No explicit appearance-based loop
closure

SUMA [175] Kitti [187] • Require 3D LIDAR model
• Errors in loop closures in similar

environments
• Validated mostly on outdoor urban

environments

• LIDAR (3D) +
RGB (Mono)

LIMO [176] Kitti [187] • Inaccuracies in low-texture environments
• Degradation of performance during

high-speed motions
• No loop closure

• LIDAR (3D) +
IMU + GPS

HDL-SLAM [180] Kitti [187] • Scan matching can present inaccuracies
in cluttered/dynamic environments

• Optimization graph contains only robot
poses and no environmental landmarks

• Inaccurate loop closure in similar
structured environments

Metric–semantic
factor graphs

• LIDAR (3D) LeGO-
LOAM [196]

Kitti [187] • High dependence on ground plane
• Inaccuracies in the presence of features

extracted from dynamic objects

SA-LOAM [171] Kitti [187],
Semantic-Kitti [197],
Ford Campus [198]

• Limited accuracy in indoor environments
• Degradation in loop closure in case of

noisy semantic detection

SUMA++ [182] Kitti [187],
Semantic-Kitti [197]

• Limited to outdoor urban environments
• Rely on accurate LIDAR model

4.2.3. Metric–Semantic Factor Graphs

As explained in Section 3, the advancements in direct situational comprehension tech-
niques have enabled a higher-level understanding of the environments around the robot,
leading to the evolution of metric–semantic SLAM overcoming the limitations of traditional
metric SLAM and providing the robot with the capabilities of human-level reasoning. Sev-
eral approaches to address these solutions have been explored, which are discussed in
the following.

Object-based metric–semantic SLAM builds a map of the instances of the different de-
tected object classes on the given input measurements. The pioneer works SLAM++ [199]
and [190] created a graph using camera pose measurements and the objects detected from
previously stored database to jointly optimize the camera and the object poses. Following
these methods, many object-based metric–semantic SLAM techniques were presented, such
as [191,192,200–205] not requiring a previously stored database and jointly optimizing
the camera poses, 3D geometric landmarks, as well as the semantic object landmarks.
LIDAR-based metric–semantic SLAM techniques such as LeGO-LOAM [196] extract pla-
nar/edges features from semantics such as ground planes to improve the performance over
metric SLAM LOAM [173]. SA-LOAM [206] utilizes semantically segmented 3D LIDAR
measurements to generate a semantic graph for robust loop closures. The primary sources
of inaccuracies of these techniques are due to an extreme dependence on the existence
of objects, as well as (1) the uncertainty in object detection, (2) the partial views of the objects
which are still not handled efficiently, and (3) no consideration of the topological relationship
between the objects. Moreover, most of the previously presented approaches cannot handle
dynamic objects. Research works on filtering dynamic objects from the scene, such as
DynaSLAM [207], or adding dynamic objects to the graph, such as VDO-SLAM [193] and
RDMO-SLAM [208], reduce the influence of the dynamic objects on the robot pose estimate
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obtained from the optimized graph. Nevertheless, they cannot handle complex dynamic
environments and only generate a sparse map without topological relationships between
these dynamic elements.

SLAM with a metric–semantic map augments the output metric map given by SLAM algo-
rithms with semantic information provided by scene understanding algorithms, as in [209–211]
or with SemanticFusion [212], Kimera [195], and Kimera-Multi [213]. These methods assume
a static environment around the robot; thus, the quality of the metric–semantic map of the
environment can degrade in the presence of moving objects in the background. Another
limitation of these methods is that they do not utilize useful semantic information from the
environment to improve the robot’s pose estimation and thus the map quality.

SLAM with semantics to filter dynamic objects utilizes the available semantic informa-
tion of the input images provided by the scene understanding module only to filter badly
conditioned objects (i.e., moving objects) from pictures given to the SLAM algorithms,
as in [214–216] for image-based approaches or SUMA++ [182] (see Figure 6b) for a LIDAR-
based approach. Although these methods increase the accuracy of the SLAM system
by filtering moving objects, they neglect the rest of the semantic information from the
environment to improve the robot’s pose estimation.

4.3. Mapping

This section covers the recent works which focus only on the complex high-level
representations of the environment. Most of these methods assume the SLAM problem to be
solved and focus only on the scene representation. An ideal environmental representation
must be efficient concerning the required resources, capable of reasonably estimating
regions not directly observed, and flexible enough to perform reasonably well in new
environments without any significant adaptations. Table 5 summarizes the main mapping
methods described above with their generated map types and limitations.

Occupancy mapping is a method for constructing an environment map in robotics. It
involves dividing the environment into a grid of cells, each representing a small portion of
the space. The occupancy of a cell represents the likelihood of that cell being occupied by
an obstacle or not. Initially, all cells in the map can be considered unknown or unoccupied.
As the robot moves and senses the environment, the occupancy of cells is updated based
on sensor data. One of the most popular approaches in this category is Octomap [217].
It represents the grid of cells through a hierarchical structure that allows a more efficient
query of the occupancy probability in a specific location.

The adoption of Signed-Distance Field (SDF)-based approaches in robotics is well-
established to represent the robot’s surroundings [218] and enable a planning of a safe
trajectory towards the mission goal [219]. In general, an SDF is a three-dimensional function
that maps points of a metric space to the distance to the nearest surface. SDFs can represent
distances in any number of dimensions, define complex geometries and shapes with
an arbitrary curvature, and are widely used in computer graphics. However, a severe
limitation of SDFs is that they can only represent watertight surfaces, i.e., surfaces that
divide the space between inside and outside [220].

An SDF has two main variations, Euclidean Signed-Distance Field (ESDF) and Truncated
Signed-Distance Field (TSDF), which usually apply to a discretized space made of voxels.
On the one hand, an ESDF gives the distance to the closest obstacle for free voxels and the
opposite for occupied ones. They have been used for mapping in FIESTA [221], where the
authors exploited the property of direct modeling free space for collision checking and the
gradient information for planning [222], while dramatically improving their efficiency. On the
other hand, a TSDF relies on the projective distance, which is the length measured along the
sensor ray from the camera to the observed surface. The distances are calculated only within
a specific radius around the surface boundary, known as the truncation radius [223]. This
helps improve computational efficiency and reduce storage requirements while accurately
reconstructing the observed scene. TSDFs have been demonstrated in multiple works such as
Voxgraph [224], Freetures [225], Voxblox++ [226], or the more recent Voxblox-Field [227]. They can
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create and maintain globally consistent volumetric maps that are lightweight enough to run
on computationally constrained platforms and demonstrate that the resulting representation
can navigate unknown environments. A panoptic segmentation was rated with TSDFs
by Narita et al. [228] for labeling each voxel semantically while differentiating between
stuff, e.g., the background wall and floor, from things, e.g., movable objects. Furthermore,
Schmid et al. [229] leveraged pixelwise semantics to maintain temporal consistency and detect
changes in the map caused by movable objects, hence surpassing the limitations of a static
environment assumption.

Implicit neural representations (INR) (sometimes also referred to as coordinate-based
representations) are a novel way to parameterize signals of all kinds, even environments
parameterized as 3D points clouds, voxels, or meshes. With this in mind, scene representa-
tion networks (SRNs) [230] have been proposed as a continuous scene representation that
encodes both geometry and appearance and can be trained without any 3D supervision.
It has been shown that SRNs generalize well across scenes, can learn geometry and ap-
pearance priors, and are helpful for novel view synthesis, few-shot reconstruction, joint
shape, and appearance interpolation in the unsupervised discovery of nonrigid models.
In [231], a new approach was presented, capable of modeling signals with fine details and
accurately capturing their spatial and temporal derivatives. Based on periodic activation
functions, that approach demonstrated that the resulting neural networks referred to as
sinusoidal representation networks (SIRENs) were well suited for representing complex signals,
including 3D scenes.

Neural radiance fields (NeRF) [232] exploit the framework of INRs to render realistic 3D
scenes by a differential process that takes as input a ray direction and predicts the color
and density of the scene’s structure along that ray. Sucar et al. [233] pioneered the first
application of NeRF to SLAM for representing the knowledge of the 3D structure inside
the weights of a deep NN. For their promising results, that research prospect attracted
numerous following works that continuously improved the fidelity of the reconstructions
and the possibility of updating the knowledge of the scene while maintaining previously
stored information [234–238].

Differently from the previous dense environment representation methods, which are
helpful for autonomous navigation, sparser scene representations also exist, such as point
clouds and surfel maps, which are more commonly used for more straightforward tasks such
as localization. Remarkably, a surfel, i.e., a surface element, is defined by its position in 3D
space, the surface normal, and other attributes such as color and texture. Their use has
been extensively explored in recent LIDAR-based SLAM to efficiently represent a 3D map
that can be performed as a consequence of optimization following revisited places, i.e., loop
closure [239,240].

Three-dimensional scene graphs have also been researched to represent a scene, such
as in [241–243], which build a model of the environment, including not only metric and
semantic information but also essential topological relationships between the objects of
the environment. They can construct an environmental graph spanning an entire building,
including the semantics of objects (class, material, and shape), rooms, and the topological
relationships between these entities. However, these methods are executed offline and
require an available 3D mesh of the building with the registered RGB images to generate
the 3D scene graphs. Consequently, they can only work in static environments.

Dynamic Scene Graphs (DSGs) (see Figure 7) are an extension of the aforementioned
scene graphs to include dynamic elements (e.g., humans) of the environment in an actionable
representation of the scene that captures geometry and semantics [244]. Rosinol et al. [245]
presented the first method to build a DSG automatically using the input of a VIO [195].
Furthermore, it allowed the tracking of the pose of humans and optimized the mesh based
on the deformation of the space induced by detected loop closures. Although these results
were promising, their main drawback was that the DSG was built offline, and the VIO first
created a 3D-mesh-based semantic map fed to the dynamic scene generator. Consequently,
the SLAM did not use these topological relationships to improve the accuracy of the
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spatial reconstruction of the robot trajectory. Moreover, except for humans, the remaining
topological relationships were considered purely static, e.g., chairs or other furniture were
fixed to the first detection location.

Figure 7. A Dynamic Scene Graph generated by [245] with a multilayer abstraction of the environ-
ment. Copyright to [245].

Table 5. Summary of the significant types of mapping algorithms and their limitations.
.

Mapping Type Sensors Methods Limitations

Occupancy maps

• RGB-D
• 2D LIDAR
• 3D LIDAR

Octomap [217] • Cannot represent the exact shape and orientation
of objects

• Increased complexity in map querying with
increase map size

• No semantics

ESDF and TSDF

• RGB-D
• 3D LIDAR

Voxblox [223] • No Semantics
• ESDF map updates can present errors during

loop closures

Voxgraph [224] • No semantics
• Degradation of the esdf map quality in the

presence of noisy odometry estimates

Voxblox++ [226] • Degradation of the esdf map quality in the
presence of noisy odometry estimates

• Computationally expensive semantic detection
• Degradation in map quality with noise in the

semantic detection

NeRF
• RGB-D iMap [233], Urban

Radiance Fields [246],
Mega-NeRF [247]

• No semantics (but potentially learnable)
• Computationally expensive
• Needs to handle catastrophic forgetting while

integrating new knowledge

Surfel maps
• RGB-D
• 3D LIDAR

ElasticFusion [239],
SurfelMeshing [248],
Other [240]

• Sparse representation
• Cannot represent continuous surfaces
• Less useful for path planning and obstacle

avoidance

3D Scene Graphs
• RGB-D 3D DSG [241],

Hydra [249]
• Validated mainly in indoor scenarios
• Handle few dynamic objects in the scene, such as

humans

More recently, Hydra [249] has implemented the scene graph construction into a real-
time capable system relying on a highly parallelized architecture. Moreover, it can optimize
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an embedded deformation graph online, after a loop closure detection. Remarkably,
the information in the graph allows the creation of descriptors based on histograms of
objects and visited places that can be matched robustly with previously seen locations.

Therefore, DSGs, although in their infancy stage, are shown to be a practical decision-
making tool that enables robots to perform autonomous tasks. For example, Ravichandran
et al. [250] demonstrated how they could be used for learning a trajectory policy by turning
a DSG into a graph observation that served as input to a Graph Neural Network (GNN). A
DSG may also be used for planning challenging robotic tasks, as proposed in the Taskogra-
phy benchmark [251].

Lastly, one of the main features of a DSG is the possibility to perform queries and
predictions of the future evolution of the scene based on dynamic models linked with
the agents or physical elements [244]. In addition, an even more intriguing property
is their application to scene change detection or to the newly formalized semantic scene
variability estimation task, which sets as a goal the prediction of long-term variation in
location, semantic attributes, and topology of the scene objects [252]. This property has
only been explored by scratching the surface of its potential application. Still, it already
grasps our vision of a comprehension layer that produces the knowledge required by the
projection and prediction of future states.

5. Situational Projection

In robotics, the projection of the situation is essential for reasoning and the execution
of a planned mission [253]. The comprehended information can be projected in the future to
predict the future state of the robot by using a dynamic model [101] as well as the dynamic
entities in the environment. In order to predict the future state of a robot, the projection
component requires more effort in producing models that can forecast the dynamic agents’
behavior and how the scene is affected by changes that shift its appearance over time.
Remarkably, numerous research areas address specific forecast models, the interactions
between agents, and the surrounding environment’s evolution. Below, we give an overview
of the most prominent ones that we deem more related to the robotic SA concept.

5.1. Behavior Intention Prediction

Behavior intention prediction (BIP) focuses on developing methods and techniques to
enable autonomous agents, such as robots, to predict the intentions and future behaviors
of humans and other agents they interact with. This research is essential for effective
communication, collaboration, and decision-making. BIP typically involves integrating
information from multiple sources, such as visual cues, speech, and contextual information,
e.g., coming from the comprehension layer. This research has numerous applications,
including human–robot collaboration, autonomous driving, and healthcare. Especially
regarding the Autonomous Vehicle (AV) application, this topic has gained importance
among researchers and is widely studied due to safety concerns. However, we argue that
the outcome of its investigation may apply to other tasks implying an interaction among a
multitude of agents.

To define the AV BIP task, we refer to the recent survey [254] that distinguishes various
research topics related to understanding the driving scene under a unified taxonomy. The
whole problem is then defined by analyzing on a timeline the events happening on the
road scenario and the decision-making factors that lead to specific outcomes.

Scene contextual factors, such as traffic rules, uncertainties, and interpretation of goals,
are crucial for inferring the interaction among road actors [255] and the safety of the current
driving policy [256]. Specifically, interaction may be due to social behavior or physical
events such as obstacles or dynamic clues, e.g., traffic lights, that influence the decision of
the driver [257]. Multimodal perception is exploited to infer whether pedestrians are about
to cross [258] or vehicles to change lanes [259]. Mostly, recent solutions rely on DL models
such as CNNs [260,261], Recurrent Neural Networks (RNNs) [257,262], GNNs [263], or on
the transformer attention mechanism, which can estimate the crossing intention using
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only pedestrian bounding boxes as input features [264]. Otherwise, causality relations are
studied by explainable AI models to make risk assessment more intelligible [265]. Lastly,
simulation tools of road traffic and car driving, such as CARLA [266], can be used as
forecasting models provided that mechanisms to adapt synthetically generated data to the
reality are put in place [267].

BIP then requires fulfilling the task of predicting the trajectory of the agents. For an AV,
the input to the estimation is represented by the historical sequence of coordinates of all
traffic participants and possibly other contextual information, e.g., velocity. The task
is then to generate a plausible progression of the future position of other pedestrian
vehicles. Methods for predicting human motion have been exhaustively surveyed by
Rudenko et al. [268], and regarding vehicles, by Huang et al. [269], who classified the
approaches into four main categories: physics-based, machine learning, deep learning,
and reinforcement learning. Moreover, the authors determined the various contextual
factors that may constitute additional inputs for the algorithms similar to those previously
described. Finally, they acknowledged that complex deep learning architectures were the
de facto solution for real-world implementation for their performance.

Additionally, DL allows for multimodal outputs, i.e., the generation of a diverse
trajectory with an associated probability, and for multitask learning, i.e., simultaneously
producing a likelihood of a specific behavior. Behavior prediction is, in fact, a separate
task, more concerned with assigning to the road participants an intention of performing
a particular action. In the recent literature, we can find reviews of approaches specific to
understanding the behaviors of vehicles [270] and pedestrians [271]. Behavior prediction is
also related to forecasting the occurrence of accidents. This capability is a highly demanded
skill in many industrial scenarios.

6. Discussion

In the previously presented sections, we thoroughly reviewed the state-of-the-art
techniques offered by the scientific community to improve the overall intelligence of
autonomous robotic systems. Importing the knowledge from psychology to robotics,
we showed that a situational awareness perspective in robotics can efficiently classify
these presented state-of-the-art techniques in an organized and multilayered manner.
Consequently, we addressed the research questions posed at the beginning:

Through the literature review, we found a gap between the presented approaches to
provide a unified and complete Situational Awareness for the robots to understand and
reason about the environment in order to perform a mission autonomously and closely
to how human beings would. To this end, we proposed an ideal model of the robotic
SA system, which, per our mentioned conventions, would be divided into three sub-
sections. The perception layer should consist of a multimodal sensor suite for accurate
environmental perception. The comprehension layer may bear methods from direct sit-
uational comprehension and accumulated situational comprehension to improve the robot’s
ego-awareness of its state, such as its pose, but also model the external factors with which
it interacts, e.g., objects and the environment 3D structure, in the form a metric–semantic
topological scene graphs. Finally, the projection layer, which still has few connections with
the underlying perception and comprehension and is usually treated on a standalone basis,
would add forecasting models to predict the future state of the robot as well as the dynamic
environmental elements.

The progress in AI and DL has been pivotal in enhancing the robot’s comprehension
of a situation, as depicted by previous research. Despite significant progress in mobile
robots’ direct situational comprehension, a versatile and standardized sensor suite must be
developed to handle environmental challenges, such as meteorological changes. Addi-
tionally, integrating these algorithms efficiently into scene modeling frameworks remains
a challenge.

The scene graph presented in the related works is a widely adapted term in computer
vision [272] to describe the relationship between objects in a scene with a structured repre-
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sentation between entities and predicates usually built from visual information. However,
we saw the current scene graphs used in mobile robotics were insufficient to address
complex autonomous tasks, such as multimodal open-set queryable maps for naviga-
tion [273,274]. Therefore, starting from the scene graph concept, we introduced the S-Graph
as a knowledge graph that emphasized the ability to store the entire representation of the
situation, comprising the currently perceived aspects of the scene, their comprehension,
the integration with previous records or possibly also external sources from a standardized
ontology [275], and the prediction of the future by the projection of the entities through
their models.

Hence, we set the S-Graph (see Figure 8) as a future target of the evolution of current
scene graphs, which adds a hierarchy of conceptual layers that contribute to including prior
knowledge of the situation while maintaining their formulation. Furthermore, the current
implementation of the S-Graph [276,277], which is still in its initial stage, stresses the
practical characteristic of using the created entity relationships, e.g., topological aspect,
to obtain an optimized answer on the state of an autonomous agent, e.g., the robot’s pose.

We believe this approach can accelerate progress and improve the autonomy of mo-
bile robots.

Figure 8. Proposed S-Graph. The graph is divided into three sublayers: the tracking layer, which
tracks the sensor measurements as creates a local key-frame map containing its respective sensor
measurements; the metric–semantic layer creates a metric–semantic map using the local key frames;
the topological layer consists of the topological connections between the elements in a given area and
the rooms that connect planar features.

7. Conclusions

In this paper, we argued that Situational Awareness is an essential capability of humans
that has been studied in several different fields but has barely been considered in robotics.
Instead, robotic research has focused on ideas in a diversified manner, such as sensing,
perception, localization, and mapping. Thus, as a direct line of future work, we proposed a
three-layered Situational Awareness framework composed of perception, comprehension,
and projection. To this end, we provided a thorough literature review of the state-of-the-
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art techniques for improving robotic intelligence. Then, we reorganized them in a more
structured, layered perception, comprehension, and projection format.

Finally, we conclude by providing appropriate answers to the earlier research question.

• What has been achieved so far, and what challenges remain?
Given the advancements in AI and DL, we notice an improved comprehension layer
by evaluating state-of-the-art algorithms. Comparing the initial approaches relying on
heuristics and heavily engineered processing, current algorithms can solve complex
tasks requiring generalization and adaptation in dynamic environments. Nevertheless,
the algorithms follow a compartmentalized approach impeding a unified SA for
mobile robots. Remarkably, forecasting the future situation is also in its infancy and
relies on perfect data from the perception and comprehension layers to demonstrate
meaningful results.

• What could the future direction of Situational Awareness be?
We argue that after analyses of these algorithms, a situational awareness perspective
can steer robots towards a faster achievement of their tasks, by comprising mul-
timodal hierarchical S-Graphs generating a metric–semantic topological map of its
environment as well as improving the robot’s pose uncertainty in it. We foresee the
S-Graph will be characterized by a tighter coupling of situational projection, percep-
tion, and comprehension, to complete the transition from static world assumptions to
natural dynamic environments.

Author Contributions: Conceptualization, H.B., J.L.S.-L. and C.C.; methodology H.B., J.L.S.-L.
and C.C.; formal analysis, H.B., C.C. and A.T.; investigation, H.B., J.L.S.-L., C.C. and A.T.; resources,
H.V.; writing—original draft preparation, H.B., C.C. and A.T.; writing—review and editing, H.B.,
J.L.S.-L., C.C., A.T. and H.V.; supervision, H.V.; project administration, J.L.S.-L.; funding acquisition,
J.L.S.-L. and H.V. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially funded by the Fonds National de la Recherche of Luxembourg
(FNR), under projects C19/IS/13713801/5G-Sky, by European Commission Horizon 2020 programme,
under project SESAME (grant agreement no. 101017258) and by a partnership between the Interdisci-
plinary Center for Security Reliability and Trust (SnT) of the University of Luxembourg and Stugalux
Construction S.A. For the purpose of Open Access, the author has applied a CC BY public copyright
license to any author-accepted manuscript version arising from this submission. All authors have
read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tzafestas, S.G. Mobile robot control and navigation: A global overview. J. Intell. Robot. Syst. 2018, 91, 35–58.
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