Article (Périodiques scientifiques)
PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data
DE NIES, Laura; Lopes, Sara; BUSI, Susheel Bhanu et al.
2021In Microbiome
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s40168-020-00993-9.pdf
Postprint Éditeur (2.35 MB)
Published version
Télécharger

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Background Pathogenic microorganisms cause disease by invading, colonizing, and damaging their host. Virulence factors including bacterial toxins contribute to pathogenicity. Additionally, antimicrobial resistance genes allow pathogens to evade otherwise curative treatments. To understand causal relationships between microbiome compositions, functioning, and disease, it is essential to identify virulence factors and antimicrobial resistance genes in situ. At present, there is a clear lack of computational approaches to simultaneously identify these factors in metagenomic datasets. Results Here, we present PathoFact, a tool for the contextualized prediction of virulence factors, bacterial toxins, and antimicrobial resistance genes with high accuracy (0.921, 0.832 and 0.979, respectively) and specificity (0.957, 0.989 and 0.994). We evaluate the performance of PathoFact on simulated metagenomic datasets and perform a comparison to two other general workflows for the analysis of metagenomic data. PathoFact outperforms all existing workflows in predicting virulence factors and toxin genes. It performs comparably to one pipeline regarding the prediction of antimicrobial resistance while outperforming the others. We further demonstrate the performance of PathoFact on three publicly available case-control metagenomic datasets representing an actual infection as well as chronic diseases in which either pathogenic potential or bacterial toxins are hypothesized to play a role. In each case, we identify virulence factors and AMR genes which differentiated between the case and control groups, thereby revealing novel gene associations with the studied diseases. Conclusion PathoFact is an easy-to-use, modular, and reproducible pipeline for the identification of virulence factors, bacterial toxins, and antimicrobial resistance genes in metagenomic data. Additionally, our tool combines the prediction of these pathogenicity factors with the identification of mobile genetic elements. This provides further depth to the analysis by considering the genomic context of the pertinent genes. Furthermore, PathoFact’s modules for virulence factors, toxins, and antimicrobial resistance genes can be applied independently, thereby making it a flexible and versatile tool. PathoFact, its models, and databases are freely available at https://pathofact.lcsb.uni.lu.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB)
Disciplines :
Microbiologie
Auteur, co-auteur :
DE NIES, Laura ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Lopes, Sara
BUSI, Susheel Bhanu ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
GALATA, Valentina ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Heintz-Buschart, Anna
LACZNY, Cedric Christian  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
MAY, Patrick  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
WILMES, Paul ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data
Date de publication/diffusion :
17 février 2021
Titre du périodique :
Microbiome
eISSN :
2049-2618
Maison d'édition :
BioMed Central, London, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Intitulé du projet de recherche :
PathoFact
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 27 avril 2021

Statistiques


Nombre de vues
357 (dont 13 Unilu)
Nombre de téléchargements
152 (dont 5 Unilu)

citations Scopus®
 
130
citations Scopus®
sans auto-citations
121
OpenCitations
 
37
citations OpenAlex
 
179
citations WoS
 
125

Bibliographie


Publications similaires



Contacter ORBilu