[en] [en] BACKGROUND: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors. Pathogenic loss-of-function variants in NAXE and NAXD lead to development of the neurometabolic disorders progressive, early-onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL)1 and PEBEL2, respectively.
METHODS: To gain insights into the molecular disease mechanisms, we investigated the metabolic impact of NAXD deficiency in human cell models. Control and NAXD-deficient cells were cultivated under different conditions, followed by cell viability and mitochondrial function assays as well as metabolomic analyses without or with stable isotope labeling. Enzymatic assays with purified recombinant proteins were performed to confirm molecular mechanisms suggested by the cell culture experiments.
RESULTS: HAP1 NAXD knockout (NAXDko) cells showed growth impairment specifically in a basal medium containing galactose instead of glucose. Surprisingly, the galactose-grown NAXDko cells displayed only subtle signs of mitochondrial impairment, whereas metabolomic analyses revealed a strong inhibition of the cytosolic, de novo serine synthesis pathway in those cells as well as in NAXD patient-derived fibroblasts. We identified inhibition of 3-phosphoglycerate dehydrogenase as the root cause for this metabolic perturbation. The NAD precursor nicotinamide riboside (NR) and inosine exerted beneficial effects on HAP1 cell viability under galactose stress, with more pronounced effects in NAXDko cells. Metabolomic profiling in supplemented cells indicated that NR and inosine act via different mechanisms that at least partially involve the serine synthesis pathway.
CONCLUSIONS: Taken together, our study identifies a metabolic vulnerability in NAXD-deficient cells that can be targeted by small molecules such as NR or inosine, opening perspectives in the search for mechanism-based therapeutic interventions in PEBEL disorders.
Disciplines :
Biochemistry, biophysics & molecular biology Human health sciences: Multidisciplinary, general & others
Author, co-author :
WALVEKAR, Adhish ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Enzymology and Metabolism > Team Carole LINSTER
WARMOES, Marc Omer ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Scientific Central Services > Metabolomics Platform
CHEUNG, Dean ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Sikora, Tim ; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
SEYEDKATOULI, Najmesadat ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Enzymology and Metabolism
Gomez-Giro, Gemma ; Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
PERRONE, Sebastian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Enzymology and Metabolism > Team Carole LINSTER
Dengler, Lisa ; Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
Unger, François ; Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
Santos, Bruno F R ; Disease Modeling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux and Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
GAVOTTO, Floriane ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Metabolomics Platform
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Van Bergen, Nicole J ; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia ; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
Christodoulou, John ; Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia ; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia ; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
Fonds National de la Recherche Luxembourg Juniclair Foundation Mito Foundation
Funding text :
We thank J\u00E9r\u00F4me Oswald (LCSB) for support with generating the NAXD rescue plasmids and Alison Graham and Sara Howden from the Gene Editing Core facility at MCRI for generating the NAXD knockout iPSC lines. The author/s acknowledge the facilities, and the scientific and technical assistance of Murdoch Children\u2019s Research Institute iPSC and GE Core Facility. MCRI iPSC and GE Core Facility was established using a generous donation from the Stafford Fox Medical Research Foundation. It is currently supported by Phenomics Australia (PA), and the Novo Nordisk Foundation reNEW Center for Stem Cell Medicine (NNF21CC0073729). PA is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) program. We acknowledge Gezime Seferi (LCSB) for help with the NAXD gene expression analysis during the revision of the manuscript. We also acknowledge Siddhesh Kamat (Indian Institute of Science Education and Research Pune, India) for providing infrastructural support to A.S.W.This research was supported by a CORE grant from the Luxembourg National Research Fund (FNR) under project code C18/BM/12661133 and a donation from the Juniclair Foundation to C.L.L. The FNR also provided a PhD fellowship to N.K. within the doctoral training unit ACTIVE (PRIDE19/14063202) under the supervision of C.L.L. The research conducted at the Murdoch Children\u2019s Research Institute (MCRI) was supported by the State Government of Victoria\u2019s Operational Infrastructure Support Program. The work was supported by funding from the Mito Foundation to N.V.B. and J.C., the MCRI Near Miss grant to N.V.B., and the MCRI Strategic Pilot Project in Stem Cell and Genomics Medicine grant to N.V.B. and J.C. The Chair in Genomic Medicine awarded to J.C. is generously supported by The Royal Children\u2019s Hospital Foundation. We are grateful to the Crane and Perkins families for their generous financial support.
C.L. Linster E. Van Schaftingen A.D. Hanson Metabolite damage and its repair or pre-emption Nat Chem Biol 9 2 72 80 1:CAS:528:DC%2BC3sXhtFSnu7k%3D 23334546
C.M. Griffith A.S. Walvekar C.L. Linster Approaches for completing metabolic networks through metabolite damage and repair discovery Curr Opin Syst Biol 28 1:CAS:528:DC%2BB38XhtlSmt7jO 100379
E. Van Schaftingen R. Rzem M. Veiga-da-Cunha L-2-Hydroxyglutaric aciduria, a disorder of metabolite repair J Inherit Metab Dis 32 2 135 142 19020988
M. Veiga-da-Cunha E. Van Schaftingen G.T. Bommer Inborn errors of metabolite repair J Inherit Metab Dis 43 1 14 24 1:CAS:528:DC%2BB3cXhvVarsrY%3D 31691304
G.W. Rafter S. Chaykin E.G. Krebs The action of glyceraldehyde-3-phosphate dehydrogenase on reduced diphosphopyridine nucleotide J Biol Chem 208 2 799 811 1:CAS:528:DyaG2cXls12ntA%3D%3D 13174589
P. Prabhakar J.I. Laboy J. Wang T. Budker Z.Z. Din M. Chobanian et al. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase Arch Biochem Biophys 360 2 195 205 1:CAS:528:DyaK1MXmt1c%3D 9851831
A. Yoshida V. Dave Inhibition of NADP-dependent dehydrogenases by modified products of NADPH Arch Biochem Biophys 169 1 298 303 1:CAS:528:DyaE2MXltFSnt7Y%3D 239637
J. Becker-Kettern N. Paczia J.F. Conrotte C. Zhu O. Fiehn P.P. Jung et al. NAD(P)HX repair deficiency causes central metabolic perturbations in yeast and human cells FEBS J 285 18 3376 3401 1:CAS:528:DC%2BC1cXhsFyku7bF 30098110
A.Y. Marbaix G. Noël A.M. Detroux D. Vertommen E. Van Schaftingen C.L. Linster Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair J Biol Chem 286 48 41246 41252 1:CAS:528:DC%2BC3MXhsFaitLzF 21994945 3308837
A.Y. Marbaix D. Tyteca T.D. Niehaus A.D. Hanson C.L. Linster E. Van Schaftingen Occurrence and subcellular distribution of the NAD(P)HX repair system in mammals Biochem J 460 1 49 60 1:CAS:528:DC%2BC2cXmvFCjtb4%3D 24611804
N.J. Van Bergen Y. Guo J. Rankin N. Paczia J. Becker-Kettern L.S. Kremer et al. NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses Brain 142 1 50 58 30576410
N.J. Van Bergen A.S. Walvekar M. Patraskaki T. Sikora C.L. Linster J. Christodoulou Clinical and biochemical distinctions for a metabolite repair disorder caused by NAXD or NAXE deficiency J Inherit Metab Dis 45 6 1028 1038 35866541 9804276
J. Manor D. Calame C. Gijavanekar K. Fisher J. Hunter E. Mizerik et al. NAXE deficiency: a neurometabolic disorder of NAD(P)HX repair amenable for metabolic correction Mol Genet Metab 136 2 101 110 1:CAS:528:DC%2BB38XhsVSnt7fE 35637064 9893913
J. Zhou J. Li S.L. Stenton X. Ren S. Gong F. Fang et al. NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses Brain 143 2 31755961 e8
N.N. Borna Y. Kishita J. Abe T. Furukawa M. Ogawa-Tominaga T. Fushimi et al. NAD(P)HX dehydratase protein-truncating mutations are associated with neurodevelopmental disorder exacerbated by acute illness Brain 143 7 32462209 e54
M.U. Malik H. Nadir Z.M. Jessop J.J. Cubitt Cutaneous manifestations of NAXD deficiency – a case report Ann Med Surg 60 352 355
P. Majethia S. Mishra L.P. Rao R. Rao A. Shukla NAD(P)HX dehydratase (NAXD) deficiency due to a novel biallelic missense variant and review of literature Eur J Med Genet 64 9 1:CAS:528:DC%2BB38XitVWgs7fF 34161859 8913183 104266
J. Manor D.G. Calame C. Gijavanekar A. Tran J.M. Fatih S.R. Lalani et al. Niacin therapy improves outcome and normalizes metabolic abnormalities in an NAXD-deficient patient Brain 145 5 e36 40 35231119
N.J. Van Bergen K. Gunanayagam A.M. Bournazos A.S. Walvekar M.O. Warmoes L.N. Semcesen et al. Severe NAD(P)HX dehydratase (NAXD) neurometabolic syndrome may present in adulthood after mild head trauma Int J Mol Sci 24 4 3582 36834994 9963268
R. Spiegel A. Shaag S. Shalev O. Elpeleg Homozygous mutation in the APOA1BP is associated with a lethal infantile leukoencephalopathy Neurogenetics 17 187 190 1:CAS:528:DC%2BC28XntVOgu78%3D 27122014
L.S. Kremer K. Danhauser D. Herebian D.P. Ramadža D. Piekutowska-Abramczuk A. Seibt et al. NAXE mutations disrupt the cellular NAD(P)HX repair system and cause a lethal neurometabolic disorder of early childhood Am J Hum Genet 99 4 894 902 1:CAS:528:DC%2BC28XhsVykt7zM 27616477 5065653
D. Yu F.M. Zhao X.T. Cai H. Zhou Y. Cheng Clinical and genetic features of early-onset progressive encephalopathy associated with NAXE gene mutations Zhongguo Dang Dai Er Ke Za Zhi 20 7 524 258 30022751
J. Trinh S. Imhoff M. Dulovic-Mahlow K.K. Kandaswamy V. Tadic J. Schäfer et al. Novel NAXE variants as a cause for neurometabolic disorder: implications for treatment J Neurol 267 770 782 1:CAS:528:DC%2BC1MXitFyrur%2FN 31745726
F. Incecık S. Ceylaner Early-onset progressive encephalopathy associated with NAXE gene variants: a case report of a Turkish child Acta Neurol Belg 120 733 735 31758406
P. Mohammadi M. Heidari M.R. Ashrafi N. Mahdieh M. Garshasbi A novel homozygous missense variant in the NAXE gene in an Iranian family with progressive encephalopathy with brain edema and leukoencephalopathy Acta Neurol Belg 122 5 1201 1210 34120322
L.W. Chiu S.S. Lin C.H. Chen C.H. Lin N.C. Lee S.Y. Hong et al. NAXE gene mutation-related progressive encephalopathy: a case report and literature review Medicine 100 42 34678889 8542128 e27548
T.D. Niehaus M. Elbadawi-Sidhu L. Huang L. Prunetti J.F. Gregory III V. de Crécy-Lagard et al. Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function 10.1042/BSR20180223 Biosci Rep
J.D. Kim L. Zhu Q. Sun L. Fang Systemic metabolite profiling reveals sexual dimorphism of AIBP control of metabolism in mice PLoS ONE 16 4 1:CAS:528:DC%2BB3MXosFSrsbk%3D 33793635 8016339 e0248964
N. Paczia J. Becker-Kettern J.F. Conrotte J.O. Cifuente M.E. Guerin C.L. Linster 3-Phosphoglycerate transhydrogenation instead of dehydrogenation alleviates the redox state dependency of yeast de novo L-serine synthesis Biochemistry 58 4 259 275 1:CAS:528:DC%2BC1MXhsVeksLw%3D 30668112
L.J. Reitzer B.M. Wice D. Kennell Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells J Biol Chem 254 8 2669 2676 1:CAS:528:DyaE1MXktVehtLY%3D 429309
J. Meiser A. Schuster M. Pietzke J. Vande Voorde D. Athineos K. Oizel et al. Increased formate overflow is a hallmark of oxidative cancer Nat Commun 9 1 1368 29636461 5893600
E. Gaude C. Schmidt P.A. Gammage A. Dugourd T. Blacker S.P. Chew et al. NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction Mol Cell 69 4 581 593 1:CAS:528:DC%2BC1cXivFSgsLk%3D 29452638 5823973
T. Wang J.R. Gnanaprakasam X. Chen S. Kang X. Xu H. Sun et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction Nat Metab 2 7 635 647 32694789 7371628
W. Wang Z. Wu Z. Dai Y. Yang J. Wang G. Wu Glycine metabolism in animals and humans: implications for nutrition and health Amino Acids 45 3 463 477 23615880
R. Possemato K.M. Marks Y.D. Shaul M.E. Pacold D. Kim K. Birsoy et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer Nature 476 7360 346 350 1:CAS:528:DC%2BC3MXhtVOku7rL 21760589 3353325
C.R. Martens B.A. Denman M.R. Mazzo M.L. Armstrong N. Reisdorph M.B. McQueen et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults Nat Commun 9 1 1286 29599478 5876407
M.L. Pourci M. Mangeot T. Soni A. Lemonnier Culture of galactosaemic fibroblasts in the presence of galactose: effect of inosine J Inherit Metab Dis 13 819 828 1:CAS:528:DyaK3MXitVaqu78%3D 2079832
N. Diguet S.A. Trammell C. Tannous R. Deloux J. Piquereau N. Mougenot et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy Circulation 137 21 2256 2273 1:CAS:528:DC%2BC1cXpsl2gur0%3D 29217642
A.M. Pedley S.J. Benkovic A new view into the regulation of purine metabolism: the purinosome Trends Biochem Sci 42 2 141 154 1:CAS:528:DC%2BC28XhslSit7nI 28029518
M.A. Lancaster J.A. Knoblich Generation of cerebral organoids from human pluripotent stem cells Nat Protoc 9 10 2329 2340 1:CAS:528:DC%2BC2cXhsVyhu7%2FO 25188634 4160653
S. Jeong A.M. Savino R. Chirayil E. Barin Y. Cheng S.M. Park et al. High fructose drives the serine synthesis pathway in acute myeloid leukemic cells Cell Metab 33 1 145 159 1:CAS:528:DC%2BB3MXktlynsg%3D%3D 33357456
M. Benzarti L. Neises A. Oudin C. Krötz E. Viry E. Gargiulo et al. PKM2 diverts glycolytic flux in dependence on mitochondrial one-carbon cycle Cell Rep 43 3 1:CAS:528:DC%2BB2cXkslCqsrw%3D 38421868 113868
M. Roser D. Josic M. Kontou K. Mosetter P. Maurer W. Reutter Metabolism of galactose in the brain and liver of rats and its conversion into glutamate and other amino acids J Neural Transm 116 131 139 1:CAS:528:DC%2BD1MXhsFKhsL0%3D 19089315
A.M. Li J. Ye The PHGDH enigma: do cancer cells only need serine or also a redox modulator? Cancer Lett 476 97 105 1:CAS:528:DC%2BB3cXjsF2is7k%3D 32032680 7092752
M.E. Pacold K.R. Brimacombe S.H. Chan J.M. Rohde C.A. Lewis L.J. Swier et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate Nat Chem Biol 12 6 452 458 1:CAS:528:DC%2BC28XmsVaktLs%3D 27110680 4871733
M.A. Reid A.E. Allen S. Liu M.V. Liberti P. Liu X. Liu et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism Nat Commun 9 1 5442 1:CAS:528:DC%2BC1MXktFWisw%3D%3D 30575741 6303315
K. Capito C.J. Hedeskov Inosine-stimulated insulin release and metabolism of inosine in isolated mouse pancreatic islets Biochem J 158 2 335 340 1:CAS:528:DyaE2sXhsVektA%3D%3D 186035 1163975
J.D. Kim T. Zhou A. Zhang S. Li A.A. Gupte D.J. Hamilton et al. AIBP regulates metabolism of ketone and lipids but not mitochondrial respiration Cells 11 22 3643 1:CAS:528:DC%2BB38XjtVSjsbzO 36429071 9688289
M. Maugard P.-A. Vigneron J.P. Bolaños G. Bonvento L-Serine links metabolism with neurotransmission Prog Neurobiol 197 1:CAS:528:DC%2BB3cXhsl2kurnP 32798642 101896
K.E. Glinton P.J. Benke M.A. Lines M.T. Geraghty P. Chakraborty O.Y. Al-Dirbashi et al. Disturbed phospholipid metabolism in serine biosynthesis defects revealed by metabolomic profiling Mol Genet Metab 123 3 309 316 1:CAS:528:DC%2BC2sXhvF2nsLfI 29269105
C.R. Ferreira S.M. Goorden A. Soldatos H.M. Byers J.M. Ghauharali-van der Vlugt F.S. Beers-Stet et al. Deoxysphingolipid precursors indicate abnormal sphingolipid metabolism in individuals with primary and secondary disturbances of serine availability Mol Genet Metab 10.1016/j.ymgme.2018.05.001 30594472 6057808
M.K. Handzlik J.M. Gengatharan K.E. Frizzi G.H. McGregor C. Martino G. Rahman et al. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy Nature 614 7946 118 124 1:CAS:528:DC%2BB3sXhvVyhsLs%3D 36697822 9891999
T. Hornemann Serine deficiency causes complications in diabetes Nature 614 7946 42 43 36697725
P.J. Benke R.J. Hidalgo B.H. Braffman J. Jans K.L. Gassen R. Sunbul et al. Infantile serine biosynthesis defect due to phosphoglycerate dehydrogenase deficiency: variability in phenotype and treatment response, novel mutations, and diagnostic challenges J Child Neurol 32 6 543 549 28135894
S. Debs C.R. Ferreira C. Groden H.J. Kim K.A. King M.C. King et al. Adult diagnosis of congenital serine biosynthesis defect: a treatable cause of progressive neuropathy Am J Med Genet A 185 7 2102 2107 1:CAS:528:DC%2BB3MXhsFeqtLnI 34089226 8330494
T.J. De Koning M. Duran L.V. Maldergem M. Pineda L. Dorland R. Gooskens et al. Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency: outcome of treatment with amino acids J Inherit Metab Dis 25 119 125 12118526
J. Jaeken M. Detheux L. Van Maldergem M. Foulon H. Carchon E. Van Schaftingen 3-Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis Arch Dis Child 74 6 542 545 1:STN:280:DyaK28zhvVOjsQ%3D%3D 8758134 1511571
M. Pineda M.A. Vilaseca R. Artuch S. Santos M.G. González I. Sau et al. 3-phosphoglycerate dehydrogenase deficiency in a patient with West syndrome Dev Med Child Neurol 42 9 629 633 1:STN:280:DC%2BD3cvosFOqtQ%3D%3D 11034457
S.A. Trammell M.S. Schmidt B.J. Weidemann P. Redpath F. Jaksch R.W. Dellinger et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans Nat Commun 7 1 12948 1:CAS:528:DC%2BC28Xhs1GnsbfF 27721479 5062546
S. Chaykin J.O. Meinhart E.G. Krebs Isolation and properties of a reduced diphosphopyridine nucleotide derivative J Biol Chem 220 2 811 820 1:CAS:528:DyaG28XmvFOqsA%3D%3D 13331939
K. Hiller J. Hangebrauk C. Jäger J. Spura K. Schreiber D. Schomburg MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis Anal Chem 81 9 3429 3439 1:CAS:528:DC%2BD1MXktlSlu7o%3D 19358599
E.L. Schymanski J. Jeon R. Gulde K. Fenner M. Ruff H.P. Singer et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence Environ Sci Technol 48 4 2097 2098 1:CAS:528:DC%2BC2cXhsVKrsbk%3D 24476540
P. Millard B. Delépine M. Guionnet M. Heuillet F. Bellvert F. Létisse IsoCor: isotope correction for high-resolution MS labeling experiments Bioinformatics 35 21 4484 4487 1:CAS:528:DC%2BB3cXhtV2nu7bN 30903185
D.R. Stirling M.J. Swain-Bowden A.M. Lucas A.E. Carpenter B.A. Cimini A. Goodman Cell Profiler 4: improvements in speed, utility and usability BMC Bioinformatics 22 433 34507520 8431850
X. Yang J.S. Boehm X. Yang K. Salehi-Ashtiani T. Hao Y. Shen et al. A public genome-scale lentiviral expression library of human ORFs Nat Methods 8 8 659 661 1:CAS:528:DC%2BC3MXotV2htrw%3D 21706014 3234135
S.E. Calvo A.G. Compton S.G. Hershman S.C. Lim D.S. Lieber E.J. Tucker et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing Sci Transl Med 10.1126/scitranslmed.3003310 22277967 3523805
M.W. Pfaffl A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res 29 9 1:STN:280:DC%2BD38nis12jtw%3D%3D 11328886 55695 e45