Article (Périodiques scientifiques)
Improving prediction through machine learning: The relation between conscientiousness and academic achievement
Chernikova, O; FRANZEN, Patrick; Arens, A.K. et al.
2025In European Journal of Psychological Assessment
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
chernikova-franzen-et-al-2025-improving-prediction-through-machine-learning.pdf
Postprint Auteur (871.04 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
machine learning; conscientiousness; academic success; predictive modeling; psychological assessment
Résumé :
[en] In psychological assessment, gauging the impact of personality traits on academic outcomes is vital. Many studies explore the relation between academic achievement and traits like conscientiousness but prioritize description over prediction. Addressing this gap by focusing on actual prediction can refine assessment methodologies and deepen theoretical understanding. Our study focuses on predicting the influence of conscientiousness facets on standardized test scores using various machine learning strategies. Data from N = 7,949 Luxembourgish Grade 9 students showed a gradient boosting model with item-level predictors outperformed traditional linear regression (R2 = .123 vs. R2 = .077). This model revealed both linear and nonlinear ties between conscientiousness facets and achievement. Our findings accentuate conscientiousness’s underestimated predictive power for academic success and advocate for machine learning as a pivotal tool in psychological testing, particularly for outcome prediction.
Centre de recherche :
Faculty of Language and Literature, Humanities, Arts and Education (FLSHASE) > Luxembourg Centre for Educational Testing (LUCET)
Ludwig-Maximilian University of Munich, Germany
DIPF | Leibniz Institute for Research and Information in Education, Germany
Institute of Medical Education, LMU University Hospital, LMU Munich, Germany
Technical University Munich & Centre for International Student Assessment, Germany
Disciplines :
Education & enseignement
Auteur, co-auteur :
Chernikova, O
FRANZEN, Patrick 
Arens, A.K.
NIEPEL, Christoph  ;  University of Luxembourg
Stadler, M.
KELLER, Ulrich  ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > LUCET
FISCHBACH, Antoine  
GREIFF, Samuel 
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Improving prediction through machine learning: The relation between conscientiousness and academic achievement
Date de publication/diffusion :
13 mai 2025
Titre du périodique :
European Journal of Psychological Assessment
ISSN :
1015-5759
eISSN :
2151-2426
Maison d'édition :
Hogrefe and Huber Publishers, Boston, Etats-Unis - Massachusetts
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Educational Sciences
Intitulé du projet de recherche :
R-AGR-3214 - IRP17 - enhanCe - GREIFF Samuel
Disponible sur ORBilu :
depuis le 13 mai 2025

Statistiques


Nombre de vues
106 (dont 4 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu