Article (Périodiques scientifiques)
Factor Graphs in Optimization-Based Robotic Control—A Tutorial and Review
ABDELKARIM, Anas; VOOS, Holger; Gorges, Daniel
2025In IEEE Access, 13, p. 28315 - 28334
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
ACCESS3534993.pdf
Postprint Auteur (5.64 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
constrained factor graphs; Factor graphs; graph optimization; least squares optimization; model predictive control; robotic control; robotic perception; situational awareness; slam; Constrained factor graph; Graph optimization; Least square optimization; Model-predictive control; Robotic controls; Robotic perception; Simultaneous localization and mapping; Situational awareness; Computer Science (all); Materials Science (all); Engineering (all); Robots; Optimization; Probabilistic logic; Optimal control; Uncertainty; Tutorials; Reviews; Probability distribution; Heuristic algorithms
Résumé :
[en] Factor graphs, initially developed as probabilistic graphical models, have been widely employed for solving large-scale inference problems in robotics, particularly in tasks such as pose estimation, Structure from Motion (SfM), or Simultaneous Localization and Mapping (SLAM). Their capability to efficiently model uncertainty and the locality of sensor data has made them crucial for robotic perception and situational awareness. Recently, factor graphs have evolved beyond their probabilistic origins and are also being applied to deterministic optimization problems, such as robotic planning and control. This paper first aims to provide a comprehensive tutorial on factor graphs and the formulation and solution of the related optimization problems within the context of robotics perception. In addition, we undertake a thorough review of approaches that extend factor graphs—traditionally solved by unconstrained optimization—to optimal control tasks, emphasizing how they handle the constraints intrinsic to control problems. Finally, we analyze the potential of factor graphs for the seamless integration of robotic situational awareness, planning, and control, which remains one of the most critical challenges in achieving fully autonomous robot operations in complex environments.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ABDELKARIM, Anas  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation ; RPTU University of Kaiserslautern-Landau, Department of Electrical and Computer Engineering, Kaiserslautern, Germany
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Gorges, Daniel ;  RPTU University of Kaiserslautern-Landau, Department of Electrical and Computer Engineering, Kaiserslautern, Germany
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Factor Graphs in Optimization-Based Robotic Control—A Tutorial and Review
Date de publication/diffusion :
2025
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
Volume/Tome :
13
Pagination :
28315 - 28334
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR17041397 - MOCCA - Multi-objective Adaptive Cruise Control Of Battery Electric Vehicles With Advanced Situational Awareness, 2022 (01/02/2023-31/01/2027) - Anas Abdelkarim
Organisme subsidiant :
Fonds National de la Recherche Luxembourg
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), MOCCA Project, ref. 17041397. For the purpose of open access, and in fulfilment of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Disponible sur ORBilu :
depuis le 15 avril 2025

Statistiques


Nombre de vues
147 (dont 3 Unilu)
Nombre de téléchargements
232 (dont 8 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
3
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu