[en] [en] BACKGROUND: Parkinson's disease (PD) is the second most common, and the fastest-growing neurodegenerative disorder with unclear etiology in most cases. Therefore, the identification of non-genetic risk factors for PD pathology is crucial to develop effective preventative or therapeutic strategies. An increasing number of evidence suggests that central insulin resistance might have an essential role in PD pathology. Nevertheless, it is not clear whether insulin resistance arises from external factors/lifestyle, comorbidities such as type 2 diabetes or it can occur in a PD patient's brain independently from peripheral insulin resistance.
OBJECTIVE: We aimed to investigate insulin resistance and its role in GBA1 mutation-associated PD pathogenesis and phenotype severity.
METHODS: Midbrain organoids, generated from induced pluripotent stem cells (iPSCs) of PD patients carrying the GBA1-N370S heterozygous mutation (GBA-PD) and healthy donors, were exposed to different insulin concentrations to modify insulin signaling function. Transcriptomics analysis was performed to explore insulin signaling gene expression patterns in GBA-PD and to find a potential target for GBA-PD-associated phenotype rescue.
RESULTS: The insulin signaling pathway genes show dysregulation in GBA-PD. Particularly, we highlight that a knockdown of FOXO1 mitigates the loss of dopaminergic neurons and cellular death in GBA-PD. Additionally, our findings suggest a promising therapeutic potential of the anti-diabetic drug Pioglitazone in decreasing dopaminergic neuron loss associated with GBA-PD.
CONCLUSION: Local insulin signaling dysfunction plays a substantial role in GBA-PD pathogenesis, exacerbating dopaminergic neuron death.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
ZAGARE, Alise ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
HEMEDAN, Ahmed ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
ALMEIDA, Catarina ; University of Luxembourg ; Health Sciences Research Center, Faculty of Health Sciences Research, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
Frangenberg, Daniela; Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
Gomez-Giro, Gemma; Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
ANTONY, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Imaging Platform
HALDER, Rashi ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Sequencing Platform
Krüger, Rejko; Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg ; Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
OSTASZEWSKI, Marek ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
ARENA, Giuseppe ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Translational Neuroscience > Team Rejko KRÜGER
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
External co-authors :
yes
Language :
English
Title :
Insulin Resistance Is a Modifying Factor for Parkinson's Disease.
Publication date :
05 November 2024
Journal title :
Movement Disorders
ISSN :
0885-3185
eISSN :
1531-8257
Publisher :
John Wiley and Sons Inc, United States
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Fonds National de la Recherche Luxembourg
Funding text :
: This work was mainly supported by the internal flagship project at the Luxembourg Centre for Systems Biomedicine and by the Luxembourg National Research Fund CORE grant to GA (C21/BM/15850547/PINK1\u2010DiaPDs). Further, we acknowledge support from the National Centre of Excellence in Research on Parkinson's Disease (NCER\u2010PD), which is funded by the Luxembourg National Research Fund (FNR/NCER13/BM/11264123). Funding agencies
Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 2018;8(s1):S3–S8.
Collaborators GBDPsD. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 2018;17(11):939–953.
Collaborators GBDD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet 2023;402(10397):203–234.
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, et al. Type 2 diabetes (T2DM) and Parkinson's disease (PD): a mechanistic approach. Mol Neurobiol 2023;60:4547–4573.
Camargo Maluf F, Feder D, de Siqueira A, Carvalho A. Analysis of the relationship between type II diabetes mellitus and Parkinson's disease: a systematic review. Parkinsons Dis 2019;2019:4951379.
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, et al. The molecular mechanisms of the relationship between insulin resistance and Parkinson's disease pathogenesis. Nutrients 2023;15(16):3585.
Hong CT, Chen KY, Wang W, Chiu JY, Wu D, Chao TY, et al. Insulin resistance promotes Parkinson's disease through aberrant expression of α-Synuclein, mitochondrial dysfunction, and deregulation of the polo-like kinase 2 signaling. Cells 2020;9(3):740.
Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: what's new? Int J Mol Sci 2019;20(4):874.
Zagare A, Kurlovics J, Almeida C, et al. Insulin resistance compromises midbrain organoid neural activity and metabolic efficiency predisposing to Parkinson's disease pathology. bioRxiv. 2024.
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 diabetes and its role implications in Alzheimer's disease. Int J Mol Sci 2020;21(9):3165.
Hogg E, Athreya K, Basile C, Tan EE, Kaminski J, Tagliati M. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with Parkinson's disease. J Parkinsons Dis 2018;8(2):259–265.
Saltiel AR. Insulin signaling in health and disease. J Clin Invest 2021;131(1):e142241.
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014;6(1):a009191.
Doan KV, Kinyua AW, Yang DJ, Ko CM, Moh SH, Shong KE, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun 2016;7:12733.
Garcia-Yague AJ, Lastres-Becker I, Stefanis L, Vassilatis DK, Cuadrado A. Alpha-Synuclein induces the GSK-3-mediated phosphorylation and degradation of NURR1 and loss of dopaminergic hallmarks. Mol Neurobiol 2021;58(12):6697–6711.
Su J, Deng Y, Cai B, Teng S, Zhang S, Liu Y, et al. PI3K polymorphism in patients with sporadic Parkinson's disease. Medicine (Baltimore) 2022;101(51):e32349.
Pino E, Amamoto R, Zheng L, Cacquevel M, Sarria JC, Knott GW, et al. FOXO3 determines the accumulation of alpha-synuclein and controls the fate of dopaminergic neurons in the substantia nigra. Hum Mol Genet 2014;23(6):1435–1452.
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021;116:102012.
Dumitriu A, Latourelle JC, Hadzi TC, Pankratz N, Garza D, Miller JP, et al. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation. PLoS Genet 2012;8(6):e1002794.
Webb AE, Kundaje A, Brunet A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 2016;15(4):673–685.
Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, et al. Diabetes medications and risk of Parkinson's disease: a cohort study of patients with diabetes. Brain 2020;143(10):3067–3076.
Qin X, Zhang X, Li P, Wang M, Yan L, Bao Z, et al. Association between diabetes medications and the risk of Parkinson's disease: a systematic review and meta-analysis. Front Neurol 2021;12:678649.
Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use and risk of Parkinson's disease in patients with type 2 diabetes mellitus. NPJ Parkinsons Dis 2022;8(1):138.
Huang KH, Chang YL, Gau SY, Tsai TH, Lee CY. Dose-response Association of Metformin with Parkinson's disease odds in type 2 diabetes mellitus. Pharmaceutics 2022;14(5):946.
Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390(10103):1664–1675.
Investigators NETiPDF-Z. Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol 2015;14(8):795–803.
Hogg EaW T, Bresee C, Wertheimer J, et al. A phase II, randomized, double-blinded, placebo-controlled trial of Liraglutide in Parkinson's disease. Lancet 2022.
Chen L, Tao Y, Li J, Kang M. Pioglitazone use is associated with reduced risk of Parkinson's disease in patients with diabetes: a systematic review and meta-analysis. J Clin Neurosci 2022;106:154–158.
Smith L, Schapira AHV. GBA variants and Parkinson disease: mechanisms and treatments. Cells 2022;11(8):1261.
Reinhardt P, Glatza M, Hemmer K, Tsytsyura Y, Thiel CS, Hoing S, et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 2013;8(3):e59252.
Nickels SL, Modamio J, Mendes-Pinheiro B, Monzel AS, Betsou F, Schwamborn JC. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease. Stem Cell Res 2020;46:101870.
Harrison SE, Sozen B, Zernicka-Goetz M. In vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cells. Nat Protoc 2018;13(7):1586–1602.
Rosety I, Zagare A, Saraiva C, Nickels S, Antony P, Almeida C, et al. Impaired neuron differentiation in GBA-associated Parkinson's disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis 2023;9(1):166.
Navarro-Romero A, Fernandez-Gonzalez I, Riera J, Montpeyo M, Albert-Bayo M, Lopez-Royo T, et al. Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinsons Dis 2022;8(1):126.
van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta 2017;1859(9 Pt B):1558–1572.
Testerink N, van der Sanden MH, Houweling M, Helms JB, Vaandrager AB. Depletion of phosphatidylcholine affects endoplasmic reticulum morphology and protein traffic at the Golgi complex. J Lipid Res 2009;50(11):2182–2192.
O'Leary EI, Jiang Z, Strub M-P, Lee JC. Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated α-synuclein. J Biol Chem 2018;293(28):11195–11205.
Lerche S, Schulte C, Wurster I, Machetanz G, Roeben B, Zimmermann M, et al. The mutation matters: CSF profiles of GCase, sphingolipids, alpha-Synuclein in PD(GBA). Mov Disord 2021;36(5):1216–1228.
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020;143:105014.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;44(D1):D457–D462.
Jo A, Lee Y, Kam TI, Kang SU, Neifert S, Karuppagounder SS, et al. PARIS farnesylation prevents neurodegeneration in models of Parkinson's disease. Sci Transl Med 2021;13(604):eaax8891.
Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 2014;63(7):2232–2243.
Mayer CM, Belsham DD. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor Substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation. Endocrinology 2010;151(1):75–84.
Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, Di Monte DA. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote alpha-synuclein aggregation. Brain 2022;145(3):1038–1051.
Spassieva SD, Ji X, Liu Y, Gable K, Bielawski J, Dunn TM, et al. Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 2016;113(21):5928–5933.
Phillips GR, Hancock SE, Brown SHJ, Jenner AM, Kreilaus F, Newell KA, et al. Cholesteryl ester levels are elevated in the caudate and putamen of Huntington's disease patients. Sci Rep 2020;10(1):20314.
van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, et al. Cholesterol metabolism is a Druggable Axis that independently regulates tau and amyloid-beta in iPSC-derived Alzheimer's disease neurons. Cell Stem Cell 2019;24(3):363–375.e9.
Garcia-Sanz P, Orgaz L, Bueno-Gil G, Espadas I, Rodriguez-Traver E, Kulisevsky J, et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson's disease. Mov Disord 2017;32(10):1409–1422.
Arya A, Chahal R, Rao R, Rahman MH, Kaushik D, Akhtar MF, et al. Acetylcholinesterase inhibitory potential of various Sesquiterpene analogues for Alzheimer's disease therapy. Biomolecules 2021;11:350.
Ali-Shtayeh MS, Jamous RM, Abu-Zaitoun SY, Khasati AI, Kalbouneh SR. Biological properties and bioactive components of Mentha spicata L. essential oil: focus on potential benefits in the treatment of obesity, Alzheimer's disease, Dermatophytosis, and drug-resistant infections. Evid Based Complement Alternat Med 2019;2019:3834265.
Bradfute DL, Simoni RD. Non-sterol compounds that regulate cholesterogenesis. Analogues of farnesyl pyrophosphate reduce 3-hydroxy-3-methylglutaryl-coenzyme a reductase levels. J Biol Chem 1994;269(9):6645–6650.
Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10(3):143–156.
Reginato MJ, Lazar MA. Mechanisms by which Thiazolidinediones enhance insulin action. Trends Endocrinol Metab 1999;10(1):9–13.
Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, et al. Derivation of human midbrain-specific organoids from Neuroepithelial stem cells. Stem Cell Reports 2017;8(5):1144–1154.
Zagare A, Barmpa K, Smajic S, Smits LM, Grzyb K, Grunewald A, et al. Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression. Am J Hum Genet 2022;109(2):311–327.