Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Object-centric Reconstruction and Tracking of Dynamic Unknown Objects Using 3D Gaussian Splatting
BARAD, Kuldeep Rambhai; RICHARD, Antoine; DENTLER, Jan Eric et al.
2024In 2024 International Conference on Space Robotics, iSpaRo 2024
Peer reviewed
 

Documents


Texte intégral
isparo_gstrack_v2.pdf
Postprint Auteur (2.62 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
3D reconstruction; Dynamic environments; Gaussians; Low fidelities; Prior-knowledge; Space robotics; Splatting; Structure and motions; Target object; Unknown objects; Artificial Intelligence; Aerospace Engineering; Automotive Engineering; Control and Optimization; Computer Science - Robotics
Résumé :
[en] Generalizable perception is one of the pillars of high-level autonomy in space robotics. Estimating the structure and motion of unknown objects in dynamic environments is fundamental for such autonomous systems. Traditionally, the solutions have relied on prior knowledge of target objects, multiple disparate representations, or low-fidelity outputs unsuitable for robotic operations. This work proposes a novel approach to incrementally reconstruct and track a dynamic unknown object using a unified representation-a set of 3D Gaussian blobs that describe its geometry and appearance. The differentiable 3DGS framework is adapted to a dynamic object-centric setting. The input to the pipeline is a sequential set of RGB-D images. 3D reconstruction and 6-DoF pose tracking tasks are tackled using first-order gradient-based optimization. The formulation is simple, requires no pre-training, assumes no prior knowledge of the object or its motion, and is suitable for online applications. The proposed approach is validated on a dataset of 10 unknown spacecraft of diverse geometry and texture under arbitrary relative motion. The experiments demonstrate successful 3D reconstruction and accurate 6-DoF tracking of the target object in proximity operations over a short to medium duration. The causes of tracking drift are discussed and potential solutions are outlined.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SpaceR – Space Robotics
Disciplines :
Ingénierie aérospatiale
Sciences informatiques
Auteur, co-auteur :
BARAD, Kuldeep Rambhai  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics ; Redwire Space Europe, Luxembourg
RICHARD, Antoine ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
DENTLER, Jan Eric ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > Automation ; Redwire Space Europe, Luxembourg
OLIVARES MENDEZ, Miguel Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
MARTINEZ LUNA, Carol  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Object-centric Reconstruction and Tracking of Dynamic Unknown Objects Using 3D Gaussian Splatting
Date de publication/diffusion :
2024
Nom de la manifestation :
2024 International Conference on Space Robotics (iSpaRo)
Lieu de la manifestation :
Luxembourg, Luxembourg
Date de la manifestation :
24-06-2024 - 27-06-2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
2024 International Conference on Space Robotics, iSpaRo 2024
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
ISBN/EAN :
9798350367232
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Projet FnR :
FNR15799985 - Modular Vision For Dynamic Grasping Of Unknown Resident Space Objects, 2021 (01/04/2021-15/01/2025) - Kuldeep Rambhai Barad
Intitulé du projet de recherche :
Modular Vision For Dynamic Grasping Of Unknown Resident Space Objects
Organisme subsidiant :
FNR - Fonds National de la Recherche
N° du Fonds :
15799985
Subventionnement (détails) :
This work is supported by the Fonds National de la Recherche (FNR) Industrial Fellowship grant (15799985) and Redwire Space Europe.
Commentaire :
Published in the proceedings of the IEEE International Conference on Space Robotics 2024
Disponible sur ORBilu :
depuis le 26 décembre 2024

Statistiques


Nombre de vues
152 (dont 10 Unilu)
Nombre de téléchargements
80 (dont 4 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
5
OpenCitations
 
0
citations OpenAlex
 
5
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu