SLAM; Simultaneous localization and mapping; Visual SLAM; Marker; Fiducial Marker; Scene Graph
Résumé :
[en] Situational Graphs (S-Graphs) merge geometric models of the environment generated by Simultaneous Localization and Mapping (SLAM) approaches with 3D scene graphs into a multi-layered jointly optimizable factor graph. As an advantage, S-Graphs not only offer a more comprehensive robotic situational awareness by combining geometric maps with diverse, hierarchically organized semantic entities and their topological relationships within one graph, but they also lead to improved performance of localization and mapping on the SLAM level by exploiting semantic information. In this paper, we introduce a vision-based version of S-Graphs where a conventional Visual SLAM (VSLAM) system is used for low-level feature tracking and mapping. In addition, the framework exploits the potential of fiducial markers (both visible and our recently introduced transparent or fully invisible markers) to encode comprehensive information about environments and the objects within them. The markers aid in identifying and mapping structural-level semantic entities, including walls and doors in the environment, with reliable poses in the global reference, subsequently establishing meaningful associations with higher-level entities, including corridors and rooms. However, in addition to including semantic entities, the semantic and geometric constraints imposed by the fiducial markers are also utilized to improve the reconstructed map’s quality and reduce localization errors. Experimental results on a real-world dataset collected using legged robots show that our framework excels in crafting a richer, multi-layered hierarchical map and enhances robot pose accuracy at the same time.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > ARG - Automation & Robotics
AVSAR, Deniz Isinsu ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
SANCHEZ LOPEZ, Jose Luis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Munoz-Salinas, Rafael ; Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba, 14071 Córdoba, Spain
Luxembourg National Research Fund University of Luxembourg
N° du Fonds :
C22/IS/17387634/DEUS
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), DEUS Project, ref. C22/IS/17387634/DEUS. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. In addition, this research was funded in part by the Institute of Advanced Studies (IAS) of the University of Luxembourg through an “Audacity” grant (project TRANSCEND, 2021).
Macario Barros A. Michel M. Moline Y. Corre G. Carrel F. A comprehensive survey of visual slam algorithms Robotics 2022 11 24 10.3390/robotics11010024
Rosinol A. Abate M. Chang Y. Carlone L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization and Mapping arXiv 2020 cs.RO/1910.02490
Armeni I. He Z.Y. Gwak J. Zamir A.R. Fischer M. Malik J. Savarese S. 3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera Proceedings of the IEEE International Conference on Computer Vision Seoul, Republic of Korea 27 October–2 November 2019 5664 5673
Rosinol A. Gupta A. Abate M. Shi J. Carlone L. 3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans arXiv 2020 cs.RO/2002.06289
Hughes N. Chang Y. Carlone L. Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization arXiv 2022 cs.RO/2201.13360
Bavle H. Sanchez-Lopez J.L. Shaheer M. Civera J. Voos H. S-Graphs+: Real-time Localization and Mapping leveraging Hierarchical Representations IEEE Robot. Autom. Lett. 2023 8 4927 4934 10.1109/LRA.2023.3290512
Olson E. AprilTag: A robust and flexible visual fiducial system Proceedings of the 2011 IEEE International Conference on Robotics and Automation Shanghai, China 9–13 May 2011 IEEE New York, NY, USA 2011 3400 3407
Garrido-Jurado S. Muñoz-Salinas R. Madrid-Cuevas F.J. Marín-Jiménez M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion Pattern Recognit. 2014 47 2280 2292 10.1016/j.patcog.2014.01.005
Agha H. Geng Y. Ma X. Avşar D.I. Kizhakidathazhath R. Zhang Y.S. Tourani A. Bavle H. Sanchez-Lopez J.L. Voos H. et al. Unclonable human-invisible machine vision markers leveraging the omnidirectional chiral Bragg diffraction of cholesteric spherical reflectors Light. Sci. Appl. 2022 11 1 19 10.1038/s41377-022-01002-4 36284089
Muñoz-Salinas R. Medina-Carnicer R. UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers Pattern Recognit. 2020 101 107193 10.1016/j.patcog.2019.107193
Pfrommer B. Daniilidis K. TagSLAM: Robust SLAM with Fiducial Markers arXiv 2019 1910.00679
Tourani A. Bavle H. Sanchez-Lopez J.L. Salinas R.M. Voos H. Marker-based visual slam leveraging hierarchical representations Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Detroit, MI, USA 1–5 October 2023 IEEE New York, NY, USA 2023 3461 3467
Cai D. Li R. Hu Z. Lu J. Li S. Zhao Y. A comprehensive overview of core modules in visual SLAM framework Neurocomputing 2024 590 127760 10.1016/j.neucom.2024.127760
Al-Tawil B. Hempel T. Abdelrahman A. Al-Hamadi A. A review of visual SLAM for robotics: Evolution, properties, and future applications Front. Robot. AI 2024 11 1347985 10.3389/frobt.2024.1347985 38686339
Bowman S.L. Atanasov N. Daniilidis K. Pappas G.J. Probabilistic data association for semantic SLAM Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA) Singapore 29 May–3 June 2017 1722 1729 10.1109/ICRA.2017.7989203
Doherty K. Baxter D. Schneeweiss E. Leonard J. Probabilistic Data Association via Mixture Models for Robust Semantic SLAM arXiv 2019 cs.RO/1909.11213
Sun Y. Hu J. Yun J. Liu Y. Bai D. Liu X. Zhao G. Jiang G. Kong J. Chen B. Multi-objective location and mapping based on deep learning and visual slam Sensors 2022 22 7576 10.3390/s22197576 36236676
Yu C. Liu Z. Liu X.J. Xie F. Yang Y. Wei Q. Fei Q. DS-SLAM: A semantic visual SLAM towards dynamic environments Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Madrid, Spain 1–5 October 2018 IEEE New York, NY, USA 2018 1168 1174
Badrinarayanan V. Kendall A. Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2017 39 2481 2495 10.1109/TPAMI.2016.2644615
Yan J. Zheng Y. Yang J. Mihaylova L. Yuan W. Gu F. PLPF-VSLAM: An indoor visual SLAM with adaptive fusion of point-line-plane features J. Field Robot. 2024 41 50 67 10.1002/rob.22242
Yang S. Zhao C. Wu Z. Wang Y. Wang G. Li D. Visual SLAM based on semantic segmentation and geometric constraints for dynamic indoor environments IEEE Access 2022 10 69636 69649 10.1109/ACCESS.2022.3185766
Wu S.C. Wald J. Tateno K. Navab N. Tombari F. SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences arXiv 2021 cs.CV/2103.14898
Klokmose C.N. Kristensen J.B. Bagge R. Halskov K. BullsEye: High-precision Fiducial Tracking for Table-based Tangible Interaction Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces Dresden, Germany 16–19 November 2014 269 278
Calvet L. Gurdjos P. Charvillat V. Camera Tracking using Concentric Circle Markers: Paradigms and Algorithms Proceedings of the 2012 19th IEEE International Conference on Image Processing Orlando, FL, USA 30 September–3 October 2012 IEEE New York, NY, USA 2012 1361 1364
Lightbody P. Krajník T. Hanheide M. A Versatile High-performance Visual Fiducial Marker Detection System with Scalable Identity Encoding Proceedings of the Symposium on Applied Computing Marrakech, Morocco 3–7 April 2017 276 282
Bergamasco F. Albarelli A. Torsello A. Pi-tag: A Fast Image-space Marker Design based on Projective Invariants Mach. Vis. Appl. 2013 24 1295 1310 10.1007/s00138-012-0469-6
Uchiyama H. Oyamada Y. Transparent Random Dot Markers Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR) Beijing, China 20–24 August 2018 IEEE New York, NY, USA 2018 254 259
Costanza E. Shelley S.B. Robinson J. D-touch: A consumer-grade tangible interface module and musical applications Proceedings of the Conference on Human-Computer Interaction (HCI03) Crete, Greece 22–27 June 2003
Bencina R. Kaltenbrunner M. Jorda S. Improved Topological Fiducial Tracking in the ReactiVision System Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops San Diego, CA, USA 20–26 June 2005 IEEE New York, NY, USA 2005 99
Yu G. Hu Y. Dai J. TopoTag: A Robust and Scalable Topological Fiducial Marker System IEEE Trans. Vis. Comput. Graph. (TVCG) 2021 27 3769 3780 10.1109/TVCG.2020.2988466
Kato H. Billinghurst M. Marker Tracking and HMD Calibration for a Video-based Augmented Reality Conferencing System Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99) San Francisco, CA, USA 20–21 October 1999 IEEE New York, NY, USA 1999 85 94
Zhang Z. Hu Y. Yu G. Dai J. DeepTag: A general framework for fiducial marker design and detection IEEE Trans. Pattern Anal. Mach. Intell. 2022 45 2931 2944 10.1109/TPAMI.2022.3174603
Scheirer C. Harrison C. DynaTags: Low-Cost Fiducial Marker Mechanisms Proceedings of the 2022 International Conference on Multimodal Interaction Bengaluru (Bangalore), India 7–11 November 2022 432 443
Campos C. Elvira R. Rodríguez J.J.G. Montiel J.M. Tardós J.D. Orb-slam3: An accurate open-source library for visual, visual-inertial, and multimap slam IEEE Trans. Robot. 2021 37 1874 1890 10.1109/TRO.2021.3075644