Article (Périodiques scientifiques)
Vision-Based Situational Graphs Exploiting Fiducial Markers for the Integration of Semantic Entities
TOURANI, Ali; BAVLE, Hriday; AVSAR, Deniz Isinsu et al.
2024In Robotics, 13 (7), p. 106
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
paper-main.pdf
Postprint Éditeur (7.48 MB) Licence Creative Commons - Attribution
Télécharger
Parties de texte intégral
paper-arxiv.pdf
Preprint Auteur (2.58 MB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
SLAM; Simultaneous localization and mapping; Visual SLAM; Marker; Fiducial Marker; Scene Graph
Résumé :
[en] Situational Graphs (S-Graphs) merge geometric models of the environment generated by Simultaneous Localization and Mapping (SLAM) approaches with 3D scene graphs into a multi-layered jointly optimizable factor graph. As an advantage, S-Graphs not only offer a more comprehensive robotic situational awareness by combining geometric maps with diverse, hierarchically organized semantic entities and their topological relationships within one graph, but they also lead to improved performance of localization and mapping on the SLAM level by exploiting semantic information. In this paper, we introduce a vision-based version of S-Graphs where a conventional Visual SLAM (VSLAM) system is used for low-level feature tracking and mapping. In addition, the framework exploits the potential of fiducial markers (both visible and our recently introduced transparent or fully invisible markers) to encode comprehensive information about environments and the objects within them. The markers aid in identifying and mapping structural-level semantic entities, including walls and doors in the environment, with reliable poses in the global reference, subsequently establishing meaningful associations with higher-level entities, including corridors and rooms. However, in addition to including semantic entities, the semantic and geometric constraints imposed by the fiducial markers are also utilized to improve the reconstructed map’s quality and reduce localization errors. Experimental results on a real-world dataset collected using legged robots show that our framework excels in crafting a richer, multi-layered hierarchical map and enhances robot pose accuracy at the same time.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > ARG - Automation & Robotics
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TOURANI, Ali  ;  University of Luxembourg
BAVLE, Hriday  ;  University of Luxembourg
AVSAR, Deniz Isinsu ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Munoz-Salinas, Rafael ;  Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba, 14071 Córdoba, Spain
VOOS, Holger  ;  University of Luxembourg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Vision-Based Situational Graphs Exploiting Fiducial Markers for the Integration of Semantic Entities
Date de publication/diffusion :
16 juillet 2024
Titre du périodique :
Robotics
ISSN :
2218-6581
Maison d'édition :
MDPI AG
Volume/Tome :
13
Fascicule/Saison :
7
Pagination :
106
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Organisme subsidiant :
Luxembourg National Research Fund
University of Luxembourg
N° du Fonds :
C22/IS/17387634/DEUS
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), DEUS Project, ref. C22/IS/17387634/DEUS. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. In addition, this research was funded in part by the Institute of Advanced Studies (IAS) of the University of Luxembourg through an “Audacity” grant (project TRANSCEND, 2021).
Disponible sur ORBilu :
depuis le 17 juillet 2024

Statistiques


Nombre de vues
105 (dont 11 Unilu)
Nombre de téléchargements
96 (dont 2 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu