[en] Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.
Disciplines :
Oncologie
Auteur, co-auteur :
Turner, Michelle C ; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain. ; Universitat Pompeu Fabra (UPF), Barcelona, Spain. ; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
Radzikowska, Urszula ; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland. ; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
Ferastraoaru, Denisa E ; Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA.
Pascal, Mariona ; Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain. ; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain. ; Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.
Wesseling, Pieter ; Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands. ; Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
McCraw, Alexandra ; St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.
BACKES, Claudine ; University of Luxembourg ; National Cancer Registry (Registre National du Cancer (RNC)), Luxembourg Institute of Health (LIH), Strassen, Luxembourg. ; Public Health Expertise Unit, Department of Precision Health, Cancer Epidemiology and Prevention (EPI CAN), Luxembourg Institute of Health, Strassen, Luxembourg.
Bax, Heather J ; St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.
Bergmann, Christoph ; Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany.
Bianchini, Rodolfo ; Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria. ; The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria.
Cari, Luigi ; Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
de Las Vecillas, Leticia ; Department of Allergy, La Paz University Hospital - IdiPAZ, Madrid, Spain.
Izquierdo, Elena ; Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
MICHELUCCI, Alessandro ; University of Luxembourg ; Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
NAZAROV, Petr ; University of Luxembourg ; Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg.
NICLOU, Simone P. ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM) ; NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
Nocentini, Giuseppe ; Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
OLLERT, Markus ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg. ; Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark.
Preusser, Matthias ; Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
Rohr-Udilova, Nataliya ; Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria. ; Liver Cancer (HCC) Study Group Vienna, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
Scafidi, Andrea ; Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg. ; Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
TOTH, Reka ; University of Luxembourg ; Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg.
Van Hemelrijck, Mieke ; Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
Weller, Michael ; Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
Jappe, Uta ; Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany. ; Department of Pneumology, Interdisciplinary Allergy Outpatient Clinic, University of Luebeck, Luebeck, Germany.
Escribese, Maria M ; Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
Jensen-Jarolim, Erika ; Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria. ; The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria.
Karagiannis, Sophia N ; St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK. ; Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Cancer Centre, London, UK.
Poli, Aurélie ; Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
AllergoOncology: Biomarkers and refined classification for research in the allergy and glioma nexus-A joint EAACI-EANO position paper.
Date de publication/diffusion :
24 janvier 2024
Titre du périodique :
Allergy
ISSN :
0105-4538
eISSN :
1398-9995
Maison d'édition :
Wiley-Blackwell, Oxford, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
N° du Fonds :
MR/R015643/1/MRC_/Medical Research Council/United Kingdom; MR/V049445/1/MRC_/Medical Research Council/United Kingdom; MR/L023091/1/MRC_/Medical Research Council/United Kingdom; BB/T008709/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom; KCL-BCN-Q3/BBC_/Breast Cancer Now/United Kingdom; 573/CU/CSP VA/United States; C30122/A15774/CRUK_/Cancer Research UK/United Kingdom; C30122/A11527/CRUK_/Cancer Research UK/United Kingdom
Jensen-Jarolim E, Achatz G, Turner MC, et al. AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy. 2008;63(10):1255-1266. doi:10.1111/j.1398-9995.2008.01768.x
Jensen-Jarolim E, Bax HJ, Bianchini R, et al. AllergoOncology: opposite outcomes of immune tolerance in allergy and cancer. Allergy. 2018;73(2):328-340. doi:10.1111/all.13311
Untersmayr E, Bax HJ, Bergmann C, et al. AllergoOncology: microbiota in allergy and cancer-a European academy for allergy and clinical immunology position paper. Allergy. 2019;74(6):1037-1051. doi:10.1111/all.13718
Bergmann C, Poli A, Agache I, et al. AllergoOncology: Danger signals in allergology and oncology. A European Academy of Allergy and Clinical Immunology (EAACI) Position Paper. Allergy. 2022;77(9):2594-2617. doi:10.1111/all.15255
Ferastraoaru D, Bax HJ, Bergmann C, et al. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer-a position paper of the European academy of allergy and clinical immunology (EAACI). Clin Transl Allergy. 2020;10:32. doi:10.1186/s13601-020-00335-w
Turner MC. Epidemiology: allergy history, IgE, and cancer. Cancer Immunol Immunother. 2012;61(9):1493-1510. doi:10.1007/s00262-011-1180-6
Amirian ES, Zhou R, Wrensch MR, et al. Approaching a scientific consensus on the association between allergies and glioma risk: a report from the glioma international case-control study. Cancer Epidemiol Biomarkers Prev. 2016;25(2):282-290. doi:10.1158/1055-9965.EPI-15-0847
McCraw AJ, Chauhan J, Bax HJ, et al. Insights from IgE immune surveillance in allergy and cancer for anti-tumour IgE treatments. Cancers (Basel). 2021;13(17):4460. doi:10.3390/cancers13174460
Ogulur I, Pat Y, Ardicli O, et al. Advances and highlights in biomarkers of allergic diseases. Allergy. 2021;76(12):3659-3686. doi:10.1111/all.15089
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231-1251. doi:10.1093/neuonc/noab106
Capper D, Reifenberger G, French PJ, et al. EANO guideline on rational molecular testing of gliomas, glioneuronal and neuronal tumors in adults for targeted therapy selection. Neuro Oncol. 2023;25:813-826. doi:10.1093/neuonc/noad008
Radzikowska U, Baerenfaller K, Cornejo-Garcia JA, et al. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy. 2022;77(10):2888-2908. doi:10.1111/all.15412
Wanka L, Jappe U. Trained immunity and allergy: state of the art and future perspectives. Allergy. 2021;76(4):1265-1267. doi:10.1111/all.14617
Zissler UM, Chaker AM, Effner R, et al. Interleukin-4 and interferon-gamma orchestrate an epithelial polarization in the airways. Mucosal Immunol. 2016;9(4):917-926. doi:10.1038/mi.2015.110
Jutel M, Agache I, Zemelka-Wiacek M, et al. Nomenclature of allergic diseases and hypersensitivity reactions: adapted to modern needs: An EAACI position paper. Allergy. 2023;78(11):2851-2874. doi:10.1111/all.15889
Akdis CA, Arkwright PD, Bruggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605. doi:10.1111/all.14318
Romagnani S. Immunologic influences on allergy and the TH1/TH2 balance. J Allergy Clin Immunol. 2004;113(3):395-400. doi:10.1016/j.jaci.2003.11.025
Barber D, Diaz-Perales A, Escribese MM, et al. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy. 2021;76(12):3642-3658. doi:10.1111/all.14969
Duhring L, Petry J, Lilienthal GM, et al. Sialylation of IgE reduces FcepsilonRIalpha interaction and mast cell and basophil activation in vitro and increases IgE half-life in vivo. Allergy. 2023;78(8):2301-2305. doi:10.1111/all.15665
Jutel M, Akdis CA. Immunological mechanisms of allergen-specific immunotherapy. Allergy. 2011;66(6):725-732. doi:10.1111/j.1398-9995.2011.02589.x
Locke A, Hung L, Upton JEM, O'Mahony L, Hoang J, Eiwegger T. An update on recent developments and highlights in food allergy. Allergy. 2023;78(9):2344-2360. doi:10.1111/all.15749
Worm M, Reese I, Ballmer-Weber B, et al. Update of the S2k guideline on the management of IgE-mediated food allergies. Allergol Select. 2021;5:195-243. doi:10.5414/ALX02257E
Behrends J, Schwager C, Hein M, Scholzen T, Kull S, Jappe U. Innovative robust basophil activation test using a novel gating strategy reliably diagnosing allergy with full automation. Allergy. 2021;76(12):3776-3788. doi:10.1111/all.14900
Mehlich J, Fischer J, Hilger C, et al. The basophil activation test differentiates between patients with alpha-gal syndrome and asymptomatic alpha-gal sensitization. J Allergy Clin Immunol. 2019;143(1):182-189. doi:10.1016/j.jaci.2018.06.049
Schwager C, Kull S, Behrends J, et al. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol. 2017;140(5):1331-1338.e8. doi:10.1016/j.jaci.2017.02.020
Bax HJ, Khiabany A, Stavraka C, et al. Basophil activation test in cancer patient blood evaluating potential hypersensitivity to an anti-tumor IgE therapeutic candidate. Allergy. 2020;75(8):2069-2073. doi:10.1111/all.14245
Pascal M, Moreno C, Davila I, et al. Integration of in vitro allergy test results and ratio analysis for the diagnosis and treatment of allergic patients (INTEGRA). Clin Transl Allergy. 2021;11(7):e12052. doi:10.1002/clt2.12052
Sala-Cunill A, Cardona V, Labrador-Horrillo M, et al. Usefulness and limitations of sequential serum tryptase for the diagnosis of anaphylaxis in 102 patients. Int Arch Allergy Immunol. 2013;160(2):192-199. doi:10.1159/000339749
Muraro A, Worm M, Alviani C, et al. EAACI guidelines: Anaphylaxis (2021 update). Allergy. 2022;77(2):357-377. doi:10.1111/all.15032
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716-725. doi:10.1038/nm.2678
Trivedi M, Denton E. Asthma in children and adults-what are the differences and what can they tell us about asthma? Front Pediatr. 2019;7:256. doi:10.3389/fped.2019.00256
Gülsen A, Wedi B, Jappe U. Hypersensitivity reactions to biologics (part I): allergy as an important differential diagnosis in complex immune-derived adverse events. Allergo J Int. 2020;29(4):97-125. doi:10.1007/s40629-020-00126-6
Wang J, Zhou Y, Zhang H, et al. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):138. doi:10.1038/s41392-023-01344-4
Diamant Z, Vijverberg S, Alving K, et al. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy. 2019;74(10):1835-1851. doi:10.1111/all.13806
Hearn AP, Kavanagh J, d'Ancona G, et al. The relationship between Feno and effectiveness of mepolizumab and benralizumab in severe eosinophilic asthma. J Allergy Clin Immunol Pract. 2021;9(5):2093-2096.e1. doi:10.1016/j.jaip.2021.01.008
Palikhe NS, Laratta C, Nahirney D, et al. Elevated levels of circulating CD4(+) CRTh2(+) T cells characterize severe asthma. Clin Exp Allergy. 2016;46(6):825-836. doi:10.1111/cea.12741
Huang Z, Chu M, Chen X, et al. Th2A cells: the pathogenic players in allergic diseases. Front Immunol. 2022;13:916778. doi:10.3389/fimmu.2022.916778
An J, Lee J-H, Kang Y, et al. Clinical significance of serum MRGPRX2 as a new biomarker in allergic asthma. Eur Respir J. 2019;54(suppl 63):PA4263. doi:10.1183/13993003.congress-2019.PA4263
Cao TBT, Cha HY, Yang EM, Ye YM. Elevated MRGPRX2 levels related to disease severity in patients with chronic spontaneous urticaria. Allergy Asthma Immunol Res. 2021;13(3):498-506. doi:10.4168/aair.2021.13.3.498
Sabato V, Ebo DG, Van Der Poorten MM, et al. Allergenic and mas-related G protein-coupled receptor X2-activating properties of drugs: resolving the two. J Allergy Clin Immunol Pract. 2023;11(2):395-404. doi:10.1016/j.jaip.2022.12.014
Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018;142(2):485-496.e16. doi:10.1016/j.jaci.2018.01.043
Zheng H, Zhang Y, Pan J, et al. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021;12:586078. doi:10.3389/fimmu.2021.586078
Jakwerth CA, Chaker AM, Guerth F, et al. Sputum microRNA-screening reveals prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy. Clin Exp Allergy. 2021;51(12):1577-1591. doi:10.1111/cea.14013
Radonjic-Hoesli S, Pavlov N, Simon HU, Simon D. Are blood cytokines reliable biomarkers of allergic disease diagnosis and treatment responses? J Allergy Clin Immunol. 2022;150(2):251-258. doi:10.1016/j.jaci.2022.06.008
Breiteneder H, Peng YQ, Agache I, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy. 2020;75(12):3039-3068. doi:10.1111/all.14582
Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: An emerging biomarker for allergic diseases. Allergy. 2019;74(11):2116-2128. doi:10.1111/all.13814
Roth-Walter F, Schmutz R, Mothes-Luksch N, et al. Clinical efficacy of sublingual immunotherapy is associated with restoration of steady-state serum lipocalin 2 after SLIT: a pilot study. World Allergy Organ J. 2018;11(1):21. doi:10.1186/s40413-018-0201-8
Marchica CL, Pinelli V, Borges M, et al. A role for decorin in a murine model of allergen-induced asthma. Am J Physiol Lung Cell Mol Physiol. 2011;300(6):L863-L873. doi:10.1152/ajplung.00300.2009
Delgado-Dolset MI, Obeso D, Rodriguez-Coira J, et al. Understanding uncontrolled severe allergic asthma by integration of omic and clinical data. Allergy. 2022;77(6):1772-1785. doi:10.1111/all.15192
Miller M, Broide DH. Why is ORMDL3 on chromosome 17q21 highly linked to asthma? Am J Respir Crit Care Med. 2019;199(4):404-406. doi:10.1164/rccm.201810-1941ED
Gao W, Gong J, Mu M, et al. The pathogenesis of eosinophilic asthma: a positive feedback mechanism that promotes Th2 immune response via Filaggrin deficiency. Front Immunol. 2021;12:672312. doi:10.3389/fimmu.2021.672312
Zhu AY, Mitra N, Margolis DJ. Longitudinal association of atopic dermatitis progression and keratin 6A. Sci Rep. 2022;12(1):13629. doi:10.1038/s41598-022-17946-x
Sordillo JE, Lutz SM, Jorgenson E, et al. A polygenic risk score for asthma in a large racially diverse population. Clin Exp Allergy. 2021;51(11):1410-1420. doi:10.1111/cea.14007
Young RP, Dekker JW, Wordsworth BP, et al. HLA-DR and HLA-DP genotypes and immunoglobulin E responses to common major allergens. Clin Exp Allergy. 1994;24(5):431-439. doi:10.1111/j.1365-2222.1994.tb00931.x
Zhu Z, Lee PH, Chaffin MD, et al. A genome-wide cross-trait analysis from UK biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet. 2018;50(6):857-864. doi:10.1038/s41588-018-0121-0
Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy. Allergy. 2014;69(4):420-437. doi:10.1111/all.12350
Waage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018;50(8):1072-1080. doi:10.1038/s41588-018-0157-1
Weidner J, Bartel S, Kilic A, et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021;76(6):1661-1678. doi:10.1111/all.14646
Wang Z, He Y, Cun Y, Li Q, Zhao Y, Luo Z. Transcriptomic analysis identified SLC40A1 as a key iron metabolism-related gene in airway macrophages in childhood allergic asthma. Front Cell Dev Biol. 2023;11:1164544. doi:10.3389/fcell.2023.1164544
Zissler UM, Jakwerth CA, Guerth FM, et al. Early IL-10 producing B-cells and coinciding Th/Tr17 shifts during three year grass-pollen AIT. EBioMedicine. 2018;36:475-488. doi:10.1016/j.ebiom.2018.09.016
Farraia M, Paciencia I, Castro Mendes F, et al. Allergen immunotherapy for asthma prevention: a systematic review and meta-analysis of randomized and non-randomized controlled studies. Allergy. 2022;77(6):1719-1735. doi:10.1111/all.15295
Bae JM, Choi YY, Park CO, Chung KY, Lee KH. Efficacy of allergen-specific immunotherapy for atopic dermatitis: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol. 2013;132(1):110-117. doi:10.1016/j.jaci.2013.02.044
Zielen S, Kardos P, Madonini E. Steroid-sparing effects with allergen-specific immunotherapy in children with asthma: a randomized controlled trial. J Allergy Clin Immunol. 2010;126(5):942-949. doi:10.1016/j.jaci.2010.06.002
Tabar AI, Prieto L, Alba P, et al. Double-blind, randomized, placebo-controlled trial of allergen-specific immunotherapy with the major allergen alt a 1. J Allergy Clin Immunol. 2019;144(1):216-223.e3. doi:10.1016/j.jaci.2019.02.029
Bozek A, Cudak A, Walter CG. Long-term efficacy of injected allergen immunotherapy for treatment of grass pollen allergy in elderly patients with allergic rhinitis. Allergy Asthma Proc. 2020;41(4):271-277. doi:10.2500/aap.2020.41.200035
Rodriguez-Dominguez A, Berings M, Rohrbach A, et al. Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy. J Allergy Clin Immunol. 2020;146(5):1097-1108. doi:10.1016/j.jaci.2020.03.029
Gϋlsen A, Wallis S, Jappe U. Combination of immunotherapies for severe allergic asthma. J Asthma. 2021;58(1):75-78. doi:10.1080/02770903.2019.1658204
Pagani M, Bavbek S, Alvarez-Cuesta E, et al. Hypersensitivity reactions to chemotherapy: an EAACI position paper. Allergy. 2022;77(2):388-403. doi:10.1111/all.15113
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-820. doi:10.1007/s00401-016-1545-1
Wesseling P, Capper D. WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139-150. doi:10.1111/nan.12432
Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for "diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV". Acta Neuropathol. 2018;136(5):805-810. doi:10.1007/s00401-018-1913-0
Brat DJ, Aldape K, Colman H, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603-608. doi:10.1007/s00401-020-02127-9
Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170-186. doi:10.1038/s41571-020-00447-z
Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42-56.e6. doi:10.1016/j.ccell.2017.06.003
Neftel C, Laffy J, Filbin MG, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835-849.e21. doi:10.1016/j.cell.2019.06.024
Suva ML, Tirosh I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell. 2020;37(5):630-636. doi:10.1016/j.ccell.2020.04.001
Barthel FP, Johnson KC, Varn FS, et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature. 2019;576(7785):112-120. doi:10.1038/s41586-019-1775-1
Varn FS, Johnson KC, Martinek J, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184-2199. doi:10.1016/j.cell.2022.04.038
Eckel-Passow JE, Lachance DH, Decker PA, et al. Inherited genetics of adult diffuse glioma and polygenic risk scores-a review. Neurooncol Pract. 2022;9(4):259-270. doi:10.1093/nop/npac017
White K, Connor K, Meylan M, et al. Identification, validation and biological characterisation of novel glioblastoma tumour microenvironment subtypes: implications for precision immunotherapy. Ann Oncol. 2023;34(3):300-314. doi:10.1016/j.annonc.2022.11.008
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: current and emerging concepts. Neurooncol Adv. 2023;5(1):vdad009. doi:10.1093/noajnl/vdad009
Lin C, Wang N, Xu C. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: immune function in the tumor microenvironment and implications for immunotherapy. Front Immunol. 2023;14:1123853. doi:10.3389/fimmu.2023.1123853
Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of Cancer. Immunity. 2018;48(4):812-830.e14. doi:10.1016/j.immuni.2018.03.023
Berghoff AS, Kiesel B, Widhalm G, et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol. 2017;19(11):1460-1468. doi:10.1093/neuonc/nox054
Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med. 2018;24(8):1192-1203. doi:10.1038/s41591-018-0095-6
Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17(8):1064-1075. doi:10.1093/neuonc/nou307
Cavalheiro VJ, Campos ACP, Lima L, et al. Unraveling the peripheral and local role of inflammatory cytokines in glioblastoma survival. Cytokine. 2023;161:156059. doi:10.1016/j.cyto.2022.156059
Gohar MK, Ammar MG, Alnagar AA, Abd-ElAziz HA. Serum IgE and allergy related genotypes of IL-4R α and IL-13 genes: association with glioma susceptibility and glioblastoma prognosis. Egypt J Immunol. 2018;25(1):19-33.
Zhang W, He Y, Kang X, et al. Association between dietary minerals and glioma: a case-control study based on Chinese population. Front Nutr. 2023;10:1118997. doi:10.3389/fnut.2023.1118997
Hu X, Deng Q, Ma L, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30(3):229-243. doi:10.1038/s41422-020-0287-8
Song E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature. 2020;577(7792):689-694. doi:10.1038/s41586-019-1912-x
Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341. doi:10.1038/nature14432
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science. 2023;380(6640):eabo7649. doi:10.1126/science.abo7649
Mollgard K, Beinlich FRM, Kusk P, et al. A mesothelium divides the subarachnoid space into functional compartments. Science. 2023;379(6627):84-88. doi:10.1126/science.adc8810
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol. 2023;20:1290-1299. doi:10.1038/s41423-023-01043-8
Li S, Olde Heuvel F, Rehman R, et al. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun. 2023;14:200. doi:10.1038/s41467-023-35806-8
Hanuscheck N, Thalman C, Domingues M, et al. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med. 2022;219(6):e20211887. doi:10.1084/jem.20211887
Costanza M. Type 2 inflammatory responses in autoimmune demyelination of the central nervous system: recent advances. J Immunol Res. 2019;2019:4204512. doi:10.1155/2019/4204512
Plum T, Binzberger R, Thiele R, et al. Mast cells link immune sensing to antigen-avoidance behaviour. Nature. 2023;620(7974):634-642. doi:10.1038/s41586-023-06188-0
Florsheim EB, Bachtel ND, Cullen JL, et al. Immune sensing of food allergens promotes avoidance behaviour. Nature. 2023;620(7974):643-650. doi:10.1038/s41586-023-06362-4
Zhou L, Chen L, Li X, Li T, Dong Z, Wang YT. Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behav Brain Res. 2019;364:374-382. doi:10.1016/j.bbr.2018.01.011
Tonelli LH, Katz M, Kovacsics CE, et al. Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun. 2009;23(6):784-793. doi:10.1016/j.bbi.2009.02.017
Sarlus H, Hoglund CO, Karshikoff B, et al. Allergy influences the inflammatory status of the brain and enhances tau-phosphorylation. J Cell Mol Med. 2012;16(10):2401-2412. doi:10.1111/j.1582-4934.2012.01556.x
Sarlus H, Eyjolfsdottir H, Eriksdotter M, Oprica M, Schultzberg M. Influence of allergy on immunoglobulins and amyloid-beta in the cerebrospinal fluid of patients with Alzheimer's disease. J Alzheimers Dis. 2015;48(2):495-505. doi:10.3233/JAD-143147
Klein B, Mrowetz H, Thalhamer J, Scheiblhofer S, Weiss R, Aigner L. Allergy enhances neurogenesis and modulates microglial activation in the hippocampus. Front Cell Neurosci. 2016;10:169. doi:10.3389/fncel.2016.00169
Yamasaki R, Fujii T, Wang B, et al. Allergic inflammation leads to neuropathic pain via glial cell activation. J Neurosci. 2016;36(47):11929-11945. doi:10.1523/JNEUROSCI.1981-16.2016
Peng X, Madany AM, Jang JC, et al. Continuous inhalation exposure to fungal allergen particulates induces lung inflammation while reducing innate immune molecule expression in the brainstem. ASN Neuro. 2018;10:1759091418782304. doi:10.1177/1759091418782304
Poli A, Oudin A, Muller A, et al. Allergic airway inflammation delays glioblastoma progression and reinvigorates systemic and local immunity in mice. Allergy. 2022;78:682-696. doi:10.1111/all.15545
Vogel Ciernia A, Careaga M, LaSalle JM, Ashwood P. Microglia from offspring of dams with allergic asthma exhibit epigenomic alterations in genes dysregulated in autism. Glia. 2018;66(3):505-521. doi:10.1002/glia.23261
Gao Z, Chen X, Xiang R, et al. Changes in resting-state spontaneous brain activity in patients with allergic rhinitis: a pilot neuroimaging study. Front Neurosci. 2021;15:697299. doi:10.3389/fnins.2021.697299
Callebaut I, Steelant B, Backaert W, et al. Brain activation after nasal histamine provocation in house dust mite allergic rhinitis patients. Allergy. 2021;76(6):1879-1882. doi:10.1111/all.14677
Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023;389(7):589-601. doi:10.1056/NEJMoa2304194
Brandes AA, Carpentier AF, Kesari S, et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 2016;18(8):1146-1156. doi:10.1093/neuonc/now009
Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA. Oncologia. 2020;6(7):1003-1010. doi:10.1001/jamaoncol.2020.1024
Lim M, Weller M, Idbaih A, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022;24(11):1935-1949. doi:10.1093/neuonc/noac116
Omuro A, Brandes AA, Carpentier AF, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol. 2023;25(1):123-134. doi:10.1093/neuonc/noac099
Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477-486. doi:10.1038/s41591-018-0337-7
Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373-1385. doi:10.1016/S1470-2045(17)30517-X
Wen PY, Reardon DA, Armstrong TS, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25(19):5799-5807. doi:10.1158/1078-0432.CCR-19-0261
Liau LM, Ashkan K, Brem S, et al. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination with Extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9(1):112-121. doi:10.1001/jamaoncol.2022.5370
Weiss T, Puca E, Silginer M, et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci Transl Med. 2020;12(564):eabb2311. doi:10.1126/scitranslmed.abb2311
Wang G, Xu S, Cao C, et al. Evidence from a large-scale meta-analysis indicates eczema reduces the incidence of glioma. Oncotarget. 2016;7(38):62598-62606. doi:10.18632/oncotarget.11545
Zhang C, Zhu QX. Allergy is associated with reduced risk of glioma: a meta-analysis. Allergol Immunopathol (Madr). 2017;45(6):553-559. doi:10.1016/j.aller.2016.12.005
Zhu Y, Teng Y, Xu S, et al. Eczema as a protective factor for brain cancer: a meta-analysis. BMC Cancer. 2022;22(1):1360. doi:10.1186/s12885-022-10471-0
Johansen C, Schuz J, Andreasen AS, Dalton SO. Study designs may influence results: the problems with questionnaire-based case-control studies on the epidemiology of glioma. Br J Cancer. 2017;116(7):841-848. doi:10.1038/bjc.2017.46
Cahoon EK, Inskip PD, Gridley G, Brenner AV. Immune-related conditions and subsequent risk of brain cancer in a cohort of 4.5 million male US veterans. Br J Cancer. 2014;110(7):1825-1833. doi:10.1038/bjc.2014.97
Mansfield KE, Schmidt SAJ, Darvalics B, et al. Association between atopic eczema and cancer in England and Denmark. JAMA Dermatol. 2020;156(10):1086-1097. doi:10.1001/jamadermatol.2020.1948
Liu X, Hemminki K, Forsti A, Sundquist J, Sundquist K, Ji J. Cancer risk and mortality in asthma patients: a Swedish national cohort study. Acta Oncol. 2015;54(8):1120-1127. doi:10.3109/0284186X.2014.1001497
He MM, Lo CH, Wang K, et al. Immune-mediated diseases associated with cancer risks. JAMA Oncol. 2022;8(2):209-219. doi:10.1001/jamaoncol.2021.5680
Krishnamachari B, Il'yasova D, Scheurer ME, et al. A pooled multisite analysis of the effects of atopic medical conditions in glioma risk in different ethnic groups. Ann Epidemiol. 2015;25(4):270-274. doi:10.1016/j.annepidem.2014.12.007
Lupatsch JE, Bailey HD, Lacour B, et al. Childhood brain tumours, early infections and immune stimulation: a pooled analysis of the ESCALE and ESTELLE case-control studies (SFCE, France). Cancer Epidemiol. 2018;52:1-9. doi:10.1016/j.canep.2017.10.015
Calboli FC, Cox DG, Buring JE, et al. Prediagnostic plasma IgE levels and risk of adult glioma in four prospective cohort studies. J Natl Cancer Inst. 2011;103(21):1588-1595. doi:10.1093/jnci/djr361
Schlehofer B, Siegmund B, Linseisen J, et al. Primary brain tumours and specific serum immunoglobulin E: a case-control study nested in the European prospective investigation into cancer and nutrition cohort. Allergy. 2011;66(11):1434-1441. doi:10.1111/j.1398-9995.2011.02670.x
Schwartzbaum J, Ding B, Johannesen TB, et al. Association between prediagnostic IgE levels and risk of glioma. J Natl Cancer Inst. 2012;104(16):1251-1259. doi:10.1093/jnci/djs315
Amirian ES, Marquez-Do D, Bondy ML, Scheurer ME. Antihistamine use and immunoglobulin E levels in glioma risk and prognosis. Cancer Epidemiol. 2013;37(6):908-912. doi:10.1016/j.canep.2013.08.004
Dunford PJ, O'Donnell N, Riley JP, Williams KN, Karlsson L, Thurmond RL. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol. 2006;176(11):7062-7070. doi:10.4049/jimmunol.176.11.7062
Morgan RK, McAllister B, Cross L, et al. Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and inhibits allergic asthma in a murine model. J Immunol. 2007;178(12):8081-8089. doi:10.4049/jimmunol.178.12.8081
Schwartzbaum J, Seweryn M, Holloman C, et al. Association between Prediagnostic allergy-related serum cytokines and glioma. PloS One. 2015;10(9):e0137503. doi:10.1371/journal.pone.0137503
Scheurer ME, El-Zein R, Thompson PA, et al. Long-term anti-inflammatory and antihistamine medication use and adult glioma risk. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1277-1281. doi:10.1158/1055-9965.EPI-07-2621
Saleh M, Wiegmans A, Malone Q, Stylli SS, Kaye AH. Effect of in situ retroviral interleukin-4 transfer on established intracranial tumors. J Natl Cancer Inst. 1999;91(5):438-445. doi:10.1093/jnci/91.5.438
Tepper RI, Coffman RL, Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science. 1992;257(5069):548-551. doi:10.1126/science.1636093
Okada H, Villa L, Attanucci J, et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther. 2001;8(15):1157-1166. doi:10.1038/sj.gt.3301496
Ma C, Cao L, Zhao J, et al. Inverse association between prediagnostic IgE levels and the risk of brain tumors: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:294213. doi:10.1155/2015/294213
Zhou M, Bracci PM, McCoy LS, et al. Serum macrophage-derived chemokine/CCL22 levels are associated with glioma risk, CD4 T cell lymphopenia and survival time. Int J Cancer. 2015;137(4):826-836. doi:10.1002/ijc.29441
Schwartzbaum J, Wang M, Root E, et al. A nested case-control study of 277 prediagnostic serum cytokines and glioma. PloS One. 2017;12(6):e0178705. doi:10.1371/journal.pone.0178705
Chen P, Chen C, Chen K, Xu T, Luo C. Polymorphisms in IL-4/IL-13 pathway genes and glioma risk: an updated meta-analysis. Tumour Biol. 2015;36(1):121-127. doi:10.1007/s13277-014-2895-8
Choi SS, Choi H, Baek IC, et al. HLA polymorphisms and risk of glioblastoma in Koreans. PloS One. 2021;16(12):e0260618. doi:10.1371/journal.pone.0260618
Eckel-Passow JE, Drucker KL, Kollmeyer TM, et al. Adult diffuse glioma GWAS by molecular subtype identifies variants in D2HGDH and FAM20C. Neuro Oncol. 2020;22(11):1602-1613. doi:10.1093/neuonc/noaa117
Disney-Hogg L, Cornish AJ, Sud A, et al. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med. 2015;16(1):42. doi:10.1186/s12916-018-1027-5
Howell AE, Robinson JW, Wootton RE, et al. Testing for causality between systematically identified risk factors and glioma: a Mendelian randomization study. BMC Cancer. 2020;20(1):508. doi:10.1186/s12885-020-06967-2
Saunders CN, Cornish AJ, Kinnersley B, et al. Lack of association between modifiable exposures and glioma risk: a Mendelian randomization analysis. Neuro Oncol. 2020;22(2):207-215. doi:10.1093/neuonc/noz209
Ostrom QT, Edelson J, Byun J, et al. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro Oncol. 2021;23(8):1304-1314. doi:10.1093/neuonc/noab072
Lehrer S, Rheinstein PH, Rosenzweig KE. Allergy may confer better survival on patients with gliomas. Clin Neurol Neurosurg. 2019;177:63-67. doi:10.1016/j.clineuro.2018.12.021
Jaman E, Zhang X, Sandlesh P, et al. History of atopy confers improved outcomes in IDH mutant and wildtype lower grade gliomas. J Neurooncol. 2021;155(2):133-141. doi:10.1007/s11060-021-03854-z
Carr MT, Hochheimer CJ, Rock AK, et al. Comorbid medical conditions as predictors of overall survival in glioblastoma patients. Sci Rep. 2019;9(1):20018. doi:10.1038/s41598-019-56574-w
Han S, Huang Y, Wang Z, Li Z, Qin X, Wu A. Increased rate of positive penicillin skin tests among patients with glioma: insights into the association between allergies and glioma risk. J Neurosurg. 2014;121(5):1176-1184. doi:10.3171/2014.7.JNS1412
Wrensch M, Wiencke JK, Wiemels J, et al. Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival. Cancer Res. 2006;66(8):4531-4541. doi:10.1158/0008-5472.CAN-05-4032
Lin Y, Jin Q, Zhang GZ, et al. Increase of plasma IgE during treatment correlates with better outcome of patients with glioblastoma. Chin Med J (Engl). 2011;124(19):3042-3048.
Scheurer ME, Amirian E, Cao Y, et al. Polymorphisms in the interleukin-4 receptor gene are associated with better survival in patients with glioblastoma. Clin Cancer Res. 2008;14(20):6640-6646. doi:10.1158/1078-0432.CCR-07-4681
Gousias K, Markou M, Arzoglou V, et al. Frequent abnormalities of the immune system in gliomas and correlation with the WHO grading system of malignancy. J Neuroimmunol. 2010;226(1–2):136-142. doi:10.1016/j.jneuroim.2010.05.027
De Boeck A, Ahn BY, D'Mello C, et al. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun. 2020;11:4997. doi:10.1038/s41467-020-18569-4
Zhang Z, Huang X, Li J, et al. Interleukin 10 promotes growth and invasion of glioma cells by up-regulating KPNA 2 in vitro. J Cancer Res Ther. 2019;15(4):927-932. doi:10.4103/jcrt.JCRT_284_19
Takashima Y, Kawaguchi A, Kanayama T, Hayano A, Yamanaka R. Correlation between lower balance of Th2 helper T-cells and expression of PD-L1/PD-1 axis genes enables prognostic prediction in patients with glioblastoma. Oncotarget. 2018;9(27):19065-19078. doi:10.18632/oncotarget.24897
Madhugiri VS, Venkatesan S, Dutt A, et al. An analysis of eosinophil- and basophil-based indices in patients with glioblastoma and their correlation with survival. World Neurosurg. 2022;170:e292-e300. doi:10.1016/j.wneu.2022.11.008
Zhang X, Li C, Xiao L, et al. Predicting individual prognosis and grade of patients with glioma based on preoperative eosinophil and neutrophil-to-lymphocyte ratio. Cancer Manag Res. 2020;12:5793-5802. doi:10.2147/cmar.S260695
Zhong QY, Fan EX, Feng GY, et al. A gene expression-based study on immune cell subtypes and glioma prognosis. BMC Cancer. 2019;19(1):1116. doi:10.1186/s12885-019-6324-7
Vaios EJ, Winter SF, Muzikansky A, Nahed BV, Dietrich J. Eosinophil and lymphocyte counts predict bevacizumab response and survival in recurrent glioblastoma. Neuro-Oncol Adv. 2020;2(1):vdaa031. doi:10.1093/noajnl/vdaa031
Madhugiri VS, Moiyadi AV, Shetty P, et al. Analysis of factors associated with long-term survival in patients with glioblastoma. World Neurosurg. 2021;149:e758-e765. doi:10.1016/j.wneu.2021.01.103
Huang Z, Wu L, Hou Z, Zhang P, Li G, Xie J. Eosinophils and other peripheral blood biomarkers in glioma grading: a preliminary study. BMC Neurol. 2019;19(1):313. doi:10.1186/s12883-019-1549-2
Zheng L, Yu M, Zhang S. Prognostic value of pretreatment circulating basophils in patients with glioblastoma. Neurosurg Rev. 2021;44(6):3471-3478. doi:10.1007/s10143-021-01524-2
Chen R, Wu W, Liu T, et al. Large-scale bulk RNA-seq analysis defines immune evasion mechanism related to mast cell in gliomas. Front Immunol. 2022;13:914001. doi:10.3389/fimmu.2022.914001
Põlajeva J, Sjösten AM, Lager N, et al. Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PloS One. 2011;6(9):e25222. doi:10.1371/journal.pone.0025222
Cernadas J, Vasconcelos MJ, Fernandes AP, Carneiro-Leao L, Gil-da-Costa MJ. Desensitization to carboplatin in low-grade glioma. A revision of 100 treatments in children. Pediatr Allergy Immunol. 2021;32(6):1388-1391. doi:10.1111/pai.13525
Chatterjee J, Sanapala S, Cobb O, et al. Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat Commun. 2021;12(1):7122. doi:10.1038/s41467-021-27455-6
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet. 2023;24(5):332-344. doi:10.1038/s41576-022-00569-3
Jordakieva G, Bianchini R, Reichhold D, et al. IgG4 induces tolerogenic M2-like macrophages and correlates with disease progression in colon cancer. Oncoimmunology. 2021;10(1):1880687. doi:10.1080/2162402X.2021.1880687
Li H, Xiao Y, Li Q, et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell. 2022;40(1):36-52.e9. doi:10.1016/j.ccell.2021.11.002
Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110:3484-3496. doi:10.1016/j.neuron.2022.10.006
Kabata H, Artis D. Neuro-immune crosstalk and allergic inflammation. J Clin Invest. 2019;129(4):1475-1482. doi:10.1172/JCI124609
Pan Y, Monje M. Neuron-glial interactions in health and brain cancer. Adv Biol (Weinh). 2022;6(9):e2200122. doi:10.1002/adbi.202200122