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Abstract
Epidemiological studies have explored the relationship between allergic diseases and 
cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse associa-
tion, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic 
disease stems from a Th2-biased immune response to allergens in predisposed at-
opic individuals. Allergic disorders vary in phenotype, genotype and endotype, af-
fecting their pathophysiology. Beyond clinical manifestation and commonly used 
clinical markers, there is ongoing research to identify novel biomarkers for allergy 
diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common 
and diverse brain tumours, have in parallel undergone changes in classification over 
time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a 
complex tumour-immune interphase and distinct immune microenvironment features. 
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1  |  INTRODUC TION

Numerous epidemiological studies have investigated associations 
between a history of allergic diseases and cancer risk or prognosis 
contributing to progress in the field of AllergoOncology.1–5 Notably, 
investigations have revealed findings of inverse associations be-
tween allergies and cancer risk, in particular for glioma.6 However, 
despite these findings, there remain outstanding questions and re-
search gaps for immunoglobulin-E (IgE)-mediated diseases and can-
cer, including glioma.7,8

Allergic diseases and cancer are both influenced by genetic 
and environmental factors, with potential impacts of allergic in-
flammation in cancer depending on the tumour subtype and its 
microenvironment. Several hypotheses have been proposed to de-
fine this complex interplay, with pro- and anti-tumoural outcomes 
integrated into the ‘combinatorial hypothesis’.8 In the cancer ini-
tiation phase, the ‘prophylaxis hypothesis’ suggests that allergic 
symptoms may decrease tumour risk by expelling environmental 
carcinogens and stimulating behavioural avoidance. The ‘immu-
nosurveillance hypothesis’ defines atopy as general enhanced 
immune responsiveness. The ‘chronic inflammation hypothesis’ 
proposes that allergic inflammation, oxidative damage and sub-
sequent gene mutations, increase neoplastic cell risk. Finally, 
the ‘T-helper cell type-2 (Th2)-skewing hypothesis’ argues that 
Type-2 (T2) immune response dominance in allergic disorders 

potentiates a pro-tumoural microenvironment over anti-tumoural 
Th1-immunity (Figure 1).8

Recent developments in biomedicine techniques allow the inte-
gration of omics and non-omics data and have revealed molecular 
heterogeneity in allergic disorders and glioma, with specific molec-
ular subtypes related to disease severity, prognosis and treatment 
options.9–12 There are a range of phenotypes and endotypes for al-
lergic diseases, such as allergic and non-allergic asthma or rhinitis. 
Advancing neuropathological, cellular and molecular approaches, 
including deoxyribonucleic acid (DNA) aberrations and methyla-
tion profiles, have revealed heterogeneity in glioma classification.10 
Adopting up-to-date molecular and genetic sub-classification ap-
proaches is relevant for research in AllergoOncology to further im-
prove understanding of immune–glioma interactions.

In this Position Paper, members of the European Academy of 
Allergy & Clinical Immunology (EACCI) and the European Association 
of Neuro-Oncology (EANO) jointly provide an overview of strat-
egies for defining allergic diseases and adult-type diffuse gliomas. 
The paper summarizes biomarkers for diagnosing and managing 
both conditions. It provides a narrative review of the epidemiolog-
ical and pre-clinical evidence on associations between allergy and 
glioma. Additionally, the paper outlines how emerging allergy bio-
markers can be utilized in next-generation AllergoOncology studies 
to enhance understanding of the aetiology and clinical management 
of glioma patients.

Immunotherapy and targeted therapy hold promise for primary brain tumour treat-
ment, but require more specific and effective approaches. Animal studies indicate al-
lergic airway inflammation may delay glioma progression. This collaborative European 
Academy of Allergy and Clinical Immunology (EAACI) and European Association of 
Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging 
biomarkers for refined allergy and adult-type diffuse glioma classification to inform 
future epidemiological and clinical studies. Future research is needed to enhance our 
understanding of immune–glioma interactions to ultimately improve patient progno-
sis and survival.
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2  |  ALLERGY: CURRENT AND EMERGING 
BIOMARKERS AND THER APEUTIC 
APPROACHES

2.1  |  Immune dysregulation

Allergic disease results from a Th2-biased immune response to en-
vironmental allergens in genetically predisposed atopic individuals. 
Trained immunity, characterized by innate immune cells displaying 
heightened reactivity and memory-like characteristics which oc-
curs through transcriptomic, epigenetic and metabolic reprograming 
following exposure to specific triggers, may play an important role 
in this context.13 Airway epithelium repetitively primed with Th1 
(interferon-gamma (IFN-γ)) or Th2 (interleukin-4 (IL-4)) cytokines 
present imprinted, polarized ‘Th1/Th2’ gene networks. Human 
bronchial epithelial cells stimulated with IL-4, but not IFN-γ, pro-
duced enhanced levels of IL-24. IL-24 was also increased in allergic 
rhinitis patients, demonstrating its potential as a biomarker of T2-
polarized epithelium and allergic inflammation.14 Additionally, dam-
aged epithelial barriers result in sensitization to different allergens 
due to alarmins (thymic stromal lymphopoietin (TSLP), IL-33 and 
IL-25)15 that mature CD4+T-cells into Th2-cells and stimulate the 

overproduction of IL-4, IL-5, IL-9, IL-13 and IL-31. These cytokines 
promote the Th2-immune response, resulting in IgE isotype switch-
ing and involve mechanisms in chronic tissue remodelling during 
allergic conditions. These include mucus hypersecretion, vascular 
leakage, smooth muscle cell hypercontraction, neurogenesis and 
angiogenesis.16,17 During sensitization, IgE binds to the high-affinity 
IgE receptor, Fc epsilon RI (FcɛRI), on mast cells (MCs) and basophils. 
Upon allergen exposure, the IgE-bound receptors aggregate, trigger-
ing immediate hypersensitivity reactions with various clinical mani-
festations affecting single or multiple organs with mild–moderate to 
severe symptoms including anaphylaxis (Figure 2).16,17 Allergic dis-
orders are heterogeneous, with distinct phenotypes, genotypes and 
endotypes that differ in pathophysiology (Table 1).12

2.2  |  Current and emerging biomarkers in 
diagnosis and treatment

2.2.1  |  Clinically used biomarkers

Allergy diagnosis relies on evaluating the history of allergen ex-
posure, symptomatology and tests to determine sensitization. 

F I G U R E  1  Proposed hypotheses of associations between allergic disorders and cancer development and progression within the concept 
of immunosurveillance and immunoediting. Tumour development involves processes from initiation through progression. Immunogenic 
transformed cells trigger immune responses, leading to cancer cell elimination via innate and adaptive immunity. This dynamic process 
generates antigen-specific anti-tumour immunity maintaining dormancy. However, immunoediting and cancer progression can develop 
poorly immunogenic cells escaping immune surveillance. Hypotheses address the link between allergies and cancers: ‘prophylaxis’ 
suggests allergic symptoms reduce risk via carcinogen expulsion, ‘chronic inflammation’ proposes inflammation-driven mutations, 
‘immunosurveillance’ defines atopy as enhanced immune responsiveness and ‘Th2-skewing’ argues allergic Th2 dominance promotes a pro-
tumoural environment. An arrow indicated activation and a stopped line is used to illustrate inhibition. Breg, regulatory B-cells; DC, dendritic 
cells; Eos, eosinophils; IFN-γ, interferon-gamma; IL, interleukin; ILC, innate lymphoid cells; Mφ, macrophage; NK, natural killer cells; PD-L1, 
programmed cell death ligand 1; TGF-β, transforming growth factor beta; Treg, regulatory T-cells. Illustration created with « BioRe​nder.​com».
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4  |    TURNER et al.

Elevated total serum IgE (tIgE) is associated with allergic disease, 
parasitosis and specific immunologic abnormalities. It has tradi-
tionally been used as a marker for atopy/allergy, prompting further 
evaluation.

Allergen-specific IgE (sIgE) is detected on MCs (skin prick testing) 
and in serum. sIgE can be detected against whole extracts as well as 
components obtained recombinantly or purified/native. Identifying 
cross-reactivity and primary sensitization aids treatment decisions 
such as allergen-specific immunotherapy (AIT).18 The glycosylation 
patterns of sIgE (and sIgG) have biomarker potential regarding al-
lergy diagnosis, severity and treatment efficacy (tolerance induc-
tion). Sequential epitope-specific IgE-profiling appears valuable in 
the course of immunotherapy, such as sublingual (SLIT), subcutane-
ous (SCIT) and peanut oral immunotherapy (OIT).19,20 Lower sIgE to 
food allergens at baseline was related to increased efficacy of pea-
nut OIT.21 Allergen provocation testing is the gold standard when 
clinical history is inconclusive.22

Indirect sIgE-detection can be performed with a flow cytometry-
based functional assay that measures basophil activation after al-
lergen exposure (basophil activation test, BAT). This test, among 
others, discriminates between sensitization and allergy for peanut 
and red meat allergies.23–25 The value of BAT extends to diagnos-
ing various conditions, such as drug hypersensitivity, encompass-
ing cases like IgE-based anti-tumour therapy in cancer patients,26 

as well as allergies to hymenoptera venom.23 BAT has been opti-
mized for broader use.23 Passive MC activation testing (pMAT) can 
provide additional information, for example, when basophils are 
non-responsive to allergens. Ratio analysis of sIgE to tIgE can aid in 
clinical interpretation.27

Serum tryptase is a biomarker for anaphylaxis. Tryptase is re-
leased by activated MCs in 30 min to 2 h. Elevated tryptase in the 
acute phase confirms the diagnosis, but normal levels do not ex-
clude anaphylaxis.28,29 Basal serum tryptase is also increased in cer-
tain MC disorders.

Eosinophilia, or elevated absolute eosinophil count (AEC), is 
found in atopy, T2-high asthma, atopic dermatitis (AD), eosinophilic 
gastrointestinal disorders and delayed drug hypersensitivity reac-
tions (DHR), although it is not specific. Eosinophilia is also observed 
in parasitic infections and autoimmune diseases. T2-high asthma 
includes, among others, allergic and eosinophilic asthma pheno-
endotypes. Allergic asthma is characterized by increased circulating 
allergen-specific IgE, while eosinophilic asthma can be diagnosed 
based on increased blood (>300/uL) or sputum eosinophil numbers 
(≥3%). On the other hand, T2-low asthma, including neutrophilic or 
paucigranulocytic asthma is characterized by low IgE, AEC and al-
lergic symptoms.30 These phenotypes have different severity and 
treatment implications in adults and children.16,31 AEC predicts ther-
apeutic response to biologics in severe asthma (e.g. anti-IL-5).32,33

F I G U R E  2  Overview of allergic inflammation: cellular and molecular mechanisms. The allergic response consists of two distinct phases. 
In the early phase or sensitization phase, initial sensitization to an allergen released from an allergen source (brownish spheres) and memory 
activation to the molecular allergen occur, while in the later phase or effector phase, a response is triggered upon re-exposure to the 
allergen. During the immediate cell-specific reaction this leads to the release of inflammatory mediators due to the cross-linking of allergen-
bound specific IgE on basophils, mast cells and eosinophils. Then, during the late reaction, after re-exposure to allergen specific T-helper 
cells (Th2 and Th17) further increase local inflammation leading to tissue remodelling and chronicity. B, B-cells; DC, dendritic cells; IFN-γ, 
interferon-gamma; IgE, immunoglobulin E; IL, interleukin; ILC, innate lymphoid cells, Th, T-helper cells; TSLP, thymic stromal lymphopoietin. 
Illustration created with « BioRe​nder.​com».
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    |  5TURNER et al.

Fractional excretion of nitric oxide (FeNO) is a reproducible and 
non-invasive indirect biomarker of IL-13-mediated T2-airway inflam-
mation. Higher values of FeNO are found in T2-high compared with 
T2-low asthma and help confirm diagnosis in adults and children. It 
predicts response to inhaled corticosteroids (ICS).34 Elevated FeNO 
values during ICS therapy do not support ICS dose reduction. Low 
FeNO values alone do not exclude bronchial asthma. FeNO levels 
vary with different asthma biologics.35

2.2.2  |  Emerging cellular markers

Allergen-specific Th2A-cells, found in allergic individuals, are CD4
+CRTH2+CD161highHPGDS+CD27lowCD49dhighST2high memory cells 
that play a pathogenic role in AD, food allergy, asthma and eosino-
philic esophagitis (EoE).36 Th2A-cell frequency inversely correlates 
with treatment efficacy. CD38+Th2A-cells are an emerging clinical 
biomarker in T2-high asthma, with CD38 upregulation in Th2A-cells 
and downregulation with immunotherapy treatment.37

MCs are activated in allergic diseases like asthma and AD, with 
MAS-related G protein-coupled receptor-X2 (MRGPRX2) being a 
new biomarker for allergic disorders such as asthma and drug allergy. 
Serum MRGPRX2 levels are elevated in allergic asthma, especially in 
those responding well to ICS.38 This receptor is expressed on cuta-
neous MCs in patients with severe chronic spontaneous urticaria.39 
Some reactions to specific drugs such as fluoroquinolone antibiot-
ics or neuromuscular blocking agents have been postulated to be 
induced by MC MRGPRX2-mediated mechanisms.40 MC activation 
tests (MAT) are being developed to aid diagnosis and monitoring of 
allergic diseases.41 However, MC activation is not always present, 
requiring differential diagnosis.

T2-innate lymphoid cells (ILC2) contribute to inflammation in al-
lergic disorders, such as allergic rhinitis (AR), chronic sinusitis, asthma 
and AD, by enhancing the activity of Th2-cells, eosinophils and their 
cytokines. ILC2 are increased in the blood, lung and skin of individ-
uals with these conditions and are related to disease severity and 
treatment response.42 Notably, AIT reduced frequencies of sputum 
ILC2s in patients with grass pollen allergic rhinitis and asthma.43

TA B L E  1  Selected biomarkers and individual demographics to study links between allergic diseases and gliomas.

Phenotype Endotype Histological phenotype Location Molecular testing
Allergic type(s) Clinically used Diffuse astrocytic Midline IDH1 , IDH2

Allergic asthma Clinical manifestation (or diagnosis) Oligodendroglial Hemispheric Chromosome 1p/19q
Allergic rhinitis Concentration of serum total IgE Mixed CDKN2A/B
Conjunctivitis Definition and concentration of serum sIgE TERT  promoter, EGFR  and/or +7/-10
Urticaria Skin testing MGMT  promoter methylation
Atopic dermatitis Basophil activation test
Food allergy Eosinophil count in blood Astrocytoma, IDH-mutant, WHO grade 2, 3 or 4
Drug allergy FeNO (respiratory allergies asthma) Oligodendroglioma, IDH-mutant and 1p/19q-codeleted, WHO grade 2 or 3
Anaphylaxis Serum tryptase (anaphylaxis) Glioblastoma, IDH-wildtype, WHO grade 4

Clinical Characteristics Emerging Biomarkers
Severity Cell count of Th2-cells Age at the diagnosis
Persistency Th2 Progression free survival
Onset age  MC Overall survival
Sensitisation sources  ILC2 Karnofsky Performance Scale
Anti-allergic drugs (type & posology) Concentration of Th2-related cytokines & proteins Neurological Assessment of Neuro-Oncology Scale
AIT IL-4 Age at recurence

IL-5
IL-10
IL-13
IL-33
TSLP
TGF-�
CCL22
CCL11
Eicosanoids
Leukotriene B4
Lipocalin-2
Genetic and molecular omics biomarkers 
HLA-typing
miRNA
SNPs (GWAS)
ORMDL3  gene
Iron deficiency
Serum MRGPRX2 levels
Sphingosine
Filaggrin

Integrated diagnosis

Clinical characteristics

Usage of steroid before, after, during treatment

ALLERGIC DISORDERS  ADULT DIFFUSE GLIOMAS

Description of the therapeutic regimens: surgical resection (radical/partial); chemotherapy (YES/NO), Radiation (YES/NO)

DONOR/PATIENT INFORMATION
Demographics Genotype

Gender
Age
Ethnicity
Socio-economic
Exposome characteristic

Whole-genome sequencing  (WGS)
SNPs

Note: The grey shade represents DONOR/PATIENT INFORMATION. The blue shade corresponds to ALLERGIC DISORDERS related information. The 
yellow shade indicates ADULT DIFFUSE GLIOMAS related information.
Abbreviations: AIT, Allergen Immunotherapy; CCL, C-C chemokine ligand; CDKN2A/B, Cyclin-dependent kinase inhibitor 2A/B; EGFR, Epidermal 
growth factor receptor; FeNO, Fraction exhaled nitric oxide; GWAS, Genome-wide association study; HLA, human leukocyte antigen; IDH, Isocitrate 
dehydrogenase; IL, Interleukin; ILC2, type-2-innate lymphoid cells; MC, Mast cells; MGMT, O6-methylguanine-DNA methyltransferase; miRNA, 
micro ribonucleic acid; MRGPRX2, Mas-Related G Protein-Coupled Receptor-X2; SNPs, Single nucleotide polymorphisms; TERT, Telomerase reverse 
transcriptase; TGF-β, Transforming growth factor; Th2, T-helper cell type-2; TSLP, Thymic Stromal Lymphopoietin; WHO, World Health Organization.
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6  |    TURNER et al.

2.2.3  |  Emerging Type-2 cytokines and proteins

Allergic patients generally present higher serum T2-cytokine levels 
compared to healthy individuals. However, they are not routinely 
used as clinical biomarkers in allergy due to usually low serum de-
tectable levels.44 Elevated IL-4 differentiates T2-high from T2-low 
asthma, while elevated IL-4 and IL-5 distinguishes asthma persis-
tence in adults and children, respectively. IL-13 and IL-33 correlate 
with asthma severity, while thymic stromal lymphopoietin (TSLP) 
levels are increased in the skin of AD patients and in the airways 
of patients with severe asthma. Decreased T2-cytokines are associ-
ated with treatment success.44,45

Elevated blood levels of CC-chemokine ligand-22 (CCL22) 
have been detected in AD patients compared to controls and 
are associated with disease severity.44 Eotaxins (CCL11) are pro-
posed biomarkers for AR, asthma and AD.44 Periostin is a bio-
marker of T2-inflammation in adults; however, its levels vary in 
children until bone growth stops.46 Eicosanoids play a role in 
allergy pathomechanisms. Levels of leukotriene B4 (LTB4) were 
increased in patients with asthma.34 Increased lipocalin-2 after 

sublingual immunotherapy was associated with clinical bene-
fit.47 Additionally, prostaglandin E2 (PGE2) was upregulated in 
untreated allergic rhinitis and asthma patients with a significant 
decrease observed after AIT. Notably, PGE2 levels correlated with 
T2-inflammation and clinical markers, such as IL-13, sputum eosin-
ophil counts and symptom scores.43 Lastly, decorin, an extracellu-
lar matrix proteoglycan participates in the pathogenesis of allergic 
asthma by reducing bioavailability of transforming growth factor 
beta (TGF-β).48

2.2.4  |  Emerging genetic and molecular 
omics markers

Genomic loci, such as 17q21 are associated with allergic dis-
eases. This region is associated with gene expression of ORMDL 
sphingolipid biosynthesis regulator 3 (ORMDL3), an inhibitor 
of de novo sphingolipid synthesis, a mediator in severe aller-
gic asthma.49 ORMDL3 is expressed in airway smooth muscle 
cells, airway epithelium, CD4+ T-cells and eosinophils. ORMDL3 

Target Indication Drug

IL-5 receptor (CD125) Asthma Benralizumab

Inhibits the dimerization of IL-13Rα1 
and IL-4Rα

Asthma + AD Lebrikizumaba

IL-5 Asthma Mepolizumab

IL-5 Rα Asthma Reslizumab

IgE Asthma + Urticaria Omalizumab

IL-4 Rαsubunit AD, Asthma, CRSwNP Dupilumab

IL-9 Asthma Enokizumaba

IL-13 AD Tralokinumab

IL-33 AD Etokimab

IL-31 receptor A AD Nemolizumab

TSLP Tezepelumab Tezepelumab

IgE Chronic urticaria Ligelizumab

IgE Chronic urticaria, asthma, CRSwNP Omalizumab

Lectin 8 Asthma Lirentelimab

Inhibits JAK1 and JAK2 AD Baricitinib

JAK1 inhibitor AD Upadacitinib

JAK1 inhibitor AD Abrocitinib

A CRTH2 antagonist Th2-mediated inflammation AMG853a

A CRTH2 antagonist Th2-mediated inflammation OC000459a

A CRTH2 antagonist Th2-mediated inflammation BI671800a

Inhibitor of GSNOR Th2-mediated inflammation N6022a

Plasma kallikrein Hereditary angioedema Lanadelumab

Note: Adapted from Gülsen et al. (2020),32 modified and updated.33

Abbreviations: AD, atopic dermatitis; CRTH2, chemoattractant receptor-homologous molecule 
expressed on Th2 cells; CRSwNP, chronic rhinosinusitis with nasal polyposis; GSNOR, S-
nitrosoglutathione reductase; IgE, immunoglobulin E; IL, interleukin; JAK, Janus kinase; TSLP, 
thymic stromal lymphopoietin.
aStudies ongoing.

TA B L E  2  Biological drugs targeting 
molecules relevant for atopic/allergic 
disease pathomechanisms.
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    |  7TURNER et al.

expression is related to exaggerated T2-inflammation, increased 
expression of adhesion molecule ICAM-1, enhanced glycolysis 
and pro-inflammatory cytokine production (IL-6 and IL-18) in both 
structural lung cells and infiltrating immune cells in the lungs.50 
Filaggrin (FLG) genetic variations are genetic biomarkers in eo-
sinophilic asthma51 and AD,52 related to a higher risk of present-
ing Th2 multimorbidity.

Polygenic risk scores combining 41 genetic polymorphisms 
show significant associations with asthma risk.53 Human leu-
kocyte antigens (HLA)-DR1 is abundant in cat allergy, while 
HLA-DR4 is associated with Alt a 1 responsiveness in Alternaria 
allergy.54 Notably, single-nucleotide polymorphism (SNP) on 
D2HGDH (rs34290285) demonstrated significance in both asthma 
and allergic diseases.55 HLA-B alleles are related to drug hyper-
sensitivity.56,57 Forty-two genetic loci are associated with AR.57 
MicroRNAs (miRNAs) are small non-coding RNA molecules in-
volved in gene expression regulation. Several miRNAs play a role 
in allergic diseases and have been proposed as potential biomark-
ers of both disease pathology and therapy outcomes.58 miR-155 
plays a role in AR, AD and asthma.58 miR-3935, the predicted 
target of PGE2 receptor (PTGER3), was upregulated during AIT in 
patients with allergy.43 The detailed role of miRNAs in allergy and 
asthma is reviewed elsewhere.58

Iron metabolism is involved in childhood allergic asthma. 
Downregulated solute carrier family-40 member-1 (SLC40A1) ex-
pression correlates with T2-inflammation in the lung and is used 
to classify patients into T2-low and T2-high subgroups. Decreased 
SLC40A1 results in reduced iron levels in the airways.59

Omics technologies can further explore allergy pathobiology, 
define specific endotypes and refine disease classification and 
treatment.12

2.3  |  Therapeutic approaches

Antihistamines, decongestants and corticosteroids relieve allergy 
symptoms. AIT shifts the Th2-response to a Th1-response, and 
induces regulatory T-(Tregs) and B-cells (IL-10+ B-cells), subse-
quently promoting tolerance to allergens and providing long-term 
symptom relief.60 AIT is effective across all age groups, requiring a 
minimum of 3 years of treatment.33 Several randomized controlled 
trials (RCTs) demonstrated AIT's efficacy,61–64 including in children 
(≥5 years) and older patients (>65 years).65 Individual molecular 
sensitization profiles influence AIT effectiveness.66 AIT is the only 
treatment with maintained efficacy after stopping treatment. AIT 
can be combined with biological therapies (treatment antibod-
ies) for ‘difficult-to-treat’ allergic asthma or to increase tolerabil-
ity.67 Biological therapies targeting IgE, interleukins, IL-receptors 
or TSLP (Table 2) are used to treat various allergic disorders.32,33 
Desensitization protocols effectively prevent DHR, maintaining 
first-line treatment when no equivalent alternatives exist in drug 
allergy patients.68

3  |  GLIOMA: UPDATED CL A SSIFIC ATION, 
IMMUNE BIOMARKERS AND THER APEUTIC 
APPROACHES

3.1  |  Diagnosis and classification

Gliomas are the most common and varied tumours originating from 
the central nervous system (CNS) parenchyma. When reviewing 
the literature on glioma it is important to acknowledge changes in 
their classification (and clinical diagnosis) over time (Figure 3). Since 
the 2016 World Health Organisation (WHO) CNS tumour classifi-
cation (revised fourth edition),69,70 particular molecular alterations 
are part of the definition of multiple gliomas, including adult-type 
diffuse gliomas. These latter tumours are characterised by exten-
sive infiltration of tumour cells in the surrounding CNS parenchyma 
and constitute the bulk of adult neuro-oncology practice. The tax-
onomy of adult-type diffuse gliomas is now largely based on the 
presence/absence of a hotspot mutation in isocitrate dehydroge-
nase gene 1 or 2 (IDH1 or IDH2) and of combined, complete loss of 
the short arm of chromosome 1 and of the long arm of chromosome 
19 (1p/19q codeletion). In the 2021 or fifth edition of the WHO 
CNS tumour classification,10 three tumour types are recognized in 
this family: diffuse astrocytoma, IDH-mutant (Grade 2, 3 or 4); oli-
godendroglioma, IDH-mutant and 1p/19q-codeleted (Grade 2 or 3); 
and glioblastoma, IDH-wildtype, which is not only the most malig-
nant (Grade 4), but also the most frequent in adults. Elucidation of 
molecular differences between adult- and paediatric-type diffuse 
gliomas has allowed for recognizing these as distinct groups of tu-
mours. The 2021 WHO classification now lists (next to adult-type 
diffuse gliomas) a family of low-grade and high-grade paediatric-
type diffuse gliomas (Table S1).

In the 2016 classification, only histological features such as 
mitotic activity, necrosis and florid microvascular proliferation 
were used for assigning malignancy grade to adult-type diffuse 
gliomas. More recently, cIMPACT-NOW presented a compilation 
of the evidence that particular molecular characteristics sub-
stantially improve the prognostic impact of grading of these 
neoplasms.71,72 According to the 2021 classification, even in the 
absence of, for example, microvascular proliferation and necrosis, 
an IDH-mutant astrocytoma with cyclin-dependent kinase inhibi-
tor 2A/B (CDKN2A/B) homozygous deletion is considered as Grade 
4. Similarly, in adult patients with a histologically low(er)-grade, 
IDH-wildtype diffuse glioma, the presence of one or more of the 
following three genetic characteristics is now sufficient for a diag-
nosis of glioblastoma, IDH-wildtype (Grade 4): telomerase reverse 
transcriptase (TERT) promoter mutation, epithelial growth factor 
receptor (EGFR) gene amplification and +7/−10 (i.e. the gain of 
whole chromosome 7 and loss of whole chromosome 10).10 These 
developments in classification necessitated updated guidelines for 
the clinical management of patients (Table 1).73

Glioblastoma can be further classified into molecular subtypes, in-
forming disease progression and clinical practice. Wang et al. identified 
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8  |    TURNER et al.

three subtypes based on molecular features: pro-neural, mesenchymal 
and classical.74 Neftel et al. utilized single-cell ribonucleic acid (RNA)-
sequencing to identify four cellular states within glioblastoma,75 show-
ing intra-tumoural heterogeneity. The signatures of individual tumour 
cells were categorized into neural progenitor-like, oligodendrocyte 
progenitor-like, astrocyte-like and mesenchymal-like.74

Although molecular knowledge has enabled more precise clin-
ical diagnosis, the translation into more effective therapeutic ap-
proaches is lagging behind. Further elucidation of the pathobiology 
of these tumours through single-cell expression profiling studies,76 
longitudinal multiplatform analyses77 and of inherited genetic as-
pects78,79 may be helpful in this regard.80

3.2  |  Immune response and biomarkers

Gliomas are characterized by a complex immune tumour microenvi-
ronment (TME), with up to 50% of tumour composition consisting of 
immune cells (mainly microglia and glioma-associated macrophages). 
In much lower quantities, tumour-infiltrating lymphocytes, mono-
cytes, MCs, eosinophils and neutrophils are also present.81,82 These 
innate and adaptive immune cell types directly and indirectly inter-
act with tumour cells and resident glial cells, neurons and vascular 
cells. The immune landscape of gliomas is highly immunosuppressive 

with immunologically quiet macrophages and sparse lymphocytic 
infiltration, with a shift to Th2.83,84 IDH-mutant gliomas display 
even less lymphocytes than IDH-wildtype tumours.85 The com-
plex dynamic interplay of the various cell types involves the ex-
pression of a multitude of immunoregulatory factors, partly with 
tumour-promoting features, such as cytokines and chemokines 
(e.g. IL-4, IL-10 and TGF-β), colony-stimulating factor 1 (CSF-1), im-
mune checkpoint molecules (e.g. programmed cell death (PD)-1/PD 
ligand 1 (PD-L1)-dependent signalling, CD39) among others.81,86 
The inflammatory cytokine profile of glioblastoma (diagnosed via 
histopathological features) is a valuable prognostic indicator, with 
increased levels of immunosuppressive molecules such as TGF-β re-
lated to decreased survival.87 Genotypes of Th2-related IL-4Rα and 
IL-13 have also been related to prognosis.88

Angiogenic (vascular endothelial growth factor (VEGF)), meta-
bolic (e.g. indoleamine-2,3-dioxygenase (IDO), arginase 1 (ARG1)) 
and dietary factors89 influence the inflammatory microenviron-
ment and immunogenicity of glial brain tumours. Presumably, the 
local immune reaction in gliomas is connected to the systemic im-
mune system via meningeal lymphatic vessels and lymphatic CNS 
drainage to cervical lymph nodes90–93 (Figure 4). CNS immunolog-
ical dysregulation in the context of allergy and/or glioma has been 
examined in multiple studies but remains poorly characterized 
(Figure 5 and Box 1).

F I G U R E  3  WHO classification of gliomas over time. Sankey plot displaying an overview of how the taxonomy of diffuse gliomas has 
changed over time; the size of the strips provides an indication of the relative frequency of the different tumour types. Since 2016 molecular 
characteristics are part of the definition of multiple gliomas. As a result, (anaplastic) oligoastrocytoma and gliomatosis cerebri are now 
generally recognized as another diffuse glioma type and their diagnosis has almost disappeared. Of note, different grades of glioma still 
had their own entry in the 2007 and 2016 classification (e.g. anaplastic astrocytoma = WHO grade 3), but in the 2021 classification grades 
are assigned within types. Last but not least, after the introduction of diffuse midline glioma, H3K27-mutant in 2016, since 2021 more 
paediatric-type diffuse gliomas are included as separate tumour types in the classification. For the sake of clarity only diffuse midline glioma, 
H3K27-altered and diffuse hemispheric glioma, H3G34-mutant (both CNS WHO grade 4) are included in this diagram. The reader is referred 
to Table S1 for all gliomas as listed in the WHO 2007, 2016 and 2021 classification of CNS tumours, respectively. CNS, central nervous 
system; H3G34, histone 3 G34; H3K27, histone 3 lysine 27; IDH, isocitrate dehydrogenase; WHO, World Health Organisation.

Diffuse midline glioma, H3K27-mutant Diffuse midline glioma
H3K27-altered

Diffuse hemispheric glioma
H3G34-mutant

Oligodendroglioma

Anaplastic
oligodendroglioma

Oligoastrocytoma

Anaplastic
oligoastrocytoma

Gliomatosis cerebri

Diffuse astrocytoma

Anaplastic
astrocytoma

Glioblastoma

Oligodendroglioma, IDH-mutant & 1p/19q-codeleted

Anaplastic oligodendroglioma, IDH-mutant & 1p/19q-codeleted

Diffuse astrocytoma, IDH-mutant

Anaplastic astrocytoma, IDH-mutant

Glioblastoma, IDH-mutant

Diffuse astrocytoma, IDH-wildtype

Anaplastic astrocytoma, IDH-wildtype

Glioblastoma, IDH-wildtype

Oligodendroglioma, IDH-mutant
&1p/19q-codeleted

(CNS WHO grade 2-3)

Astrocytoma, IDH-mutant
(CNS WHO grade 2-4)

Glioblastoma, IDH-wildtype
(CNS WHO grade 4)

2007 2016 2021

WHO classification
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    |  9TURNER et al.

3.3  |  Immunotherapeutic approaches

Immunotherapy and targeted therapy are leading areas of innovation 
for the treatment of primary brain tumours in adults and children. 
Numerous efforts have been made to integrate immunotherapy into 
current standards of care for glioblastoma that consists of neurosur-
gical resection as feasible followed by involved-field radiotherapy 

and concomitant and maintenance temozolomide alkylating agent 
chemotherapy.73 In selected patients, treatments targeting specific 
molecular tumour alterations such as B-raf proto-oncogene (BRAF) 
mutations or neurotrophic tyrosine receptor kinase (NTRK) fusions 
may be considered.11 Importantly, a recent Phase 3 trial has shown 
the efficacy of the IDH1/2 inhibitor vorasidenib in IDH-mutant 
Grade 2 glioma.112

F I G U R E  4  The border-associated immune compartments of the brain. Even though peripheral inflammation, such as allergic airway 
inflammation, can be far from the brain parenchyma, there are many ways through which the immune system can communicate with the 
brain. (A) The blood–brain barrier (BBB) is a semipermeable membrane composed of endothelial cells of the capillary wall, pericytes, with 
astrocytic end feet encircling the capillary. The BBB restricts access and immune cells can only cross this barrier during inflammation. 
However, recent discoveries found that other entry points into the brain make communication between the brain parenchyma and the 
peripheral immune system more dynamic than previously thought. (B) Meningeal lymphatic vessels found in the meningeal layer of the 
dura mater, allow surveillance of antigens and transport of immune cells in the dura. The main immune cells here are neutrophils, MCs, 
multiple stages of B-cells, monocytes and T-cells (C) During extensive neuroinflammation recruited myeloid cells and neutrophils can take 
a shortcut to the brain. They can migrate via microscopic channels crossing the inner skull cortex and end up in dura. B-cells can also enter 
the dura from the skull bone marrow. (D) The choroid plexus located in the ventricles consists of secretory epithelium producing CSF and 
is an important site for immune surveillance and this barrier allows circulating immune cells to communicate with resident choroid plexus 
macrophages and NK cells. (E) The circumventricular organs (CVO) are highly vascularized areas located in the third and fourth ventricle. 
There is a communication via the blood, brain parenchyma and CSF in the CVOs. (F) The deep cervical lymph nodes are important drainage 
routes for CNS antigens, where DCs sample antigens and may present these antigens to T-cells. (G) The cribriform plate is pierced with small 
holes in the ethmoid bone. This, together with lymphatic vessels, trigeminal nerves and olfactory nerves, is believed to allow the transport 
of CNS antigens and entry of immune cells into the CNS. The subarachnoid lymphatic-like membrane (SLYM)94 which is a fourth meningeal 
layer, completing the dura, arachnoid and pia mater, that compartmentalises the subarachnoid space in the mouse and human brain is not 
depicted in this figure. Created with « BioRe​nder.​com». BBB, blood–brain barrier CSF, cerebrospinal fluid; CNS, central nervous system.

 13989995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15994 by C

ochrane L
uxem

bourg, W
iley O

nline L
ibrary on [27/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://biorender.com


10  |    TURNER et al.

Efforts focusing on the antagonism of glioma-associated immu-
nosuppression alone, for example, blocking the TGF-β pathway113 
or PD-1/PD-L1-dependent signalling have not been successful. 
Three randomized Phase 3 trials have explored the PD-1 antibody 
nivolumab in newly diagnosed or recurrent114 glioblastoma with115 
or without116 O6-methylguanine DNA methyltransferase (MGMT) 
promoter methylation and all were negative. For newly diagnosed 
patients, whose tumours are lacking MGMT promoter methylation 
and thus are resistant to chemotherapy, nivolumab, an immune 
checkpoint inhibitor, did not work better than temozolomide.116 
It was also not superior to placebo in patients with tumours with 
MGMT promoter methylation who may exhibit higher mutational 
burden because of chemosensitivity.115 Promising findings for sur-
vival were observed when anti-PD-1 antibody, pembrolizumab, 
was administered in a ‘neoadjuvant’ setting before salvage surgery 

F I G U R E  5  Allergic inflammation modulation of central nervous system (CNS) homeostasis. (A) Allergic diseases have typically been 
inversely related to the risk of glioma development, and (B) conversely, positively related to the risk of neurological or psychiatric diseases. 
(C–F) An extended knowledge of allergy's impact on the brain was unearthed using rodent models of allergic disorders. (C) These studies 
demonstrated that allergic inflammation could increase the level of mRNA and cytokines from Th1/Th2 immunity, (D) as well as of IgE and 
IgG in brain lysates compared to controls. In parallel, allergic inflammation was shown to lead to activation of brain-specific cells, such as (E) 
microglia and (F) astrocytes. (G) Changes in the resting state of spontaneous brain activity demonstrate allergic inflammation can modulate 
brain homeostasis in humans. Created with « BioRe​nder.​com». Ig, immunoglobulin; mRNA, messenger RNA; Th, T-helper cells.

BOX 1 Allergic inflammation and brain physiology.

•	 The blood–brain barrier (BBB) is no longer the only spe-
cialised border contributing to controlling neuro-immune 
crosstalk and brain immunosurveillance (Figure 4).93

•	 Similar roles have recently been attributed to the cir-
cumventricular organs (CVO), skull bone marrow chan-
nels, the meningeal lymphatic system, choroid plexus, 
cribriform plate and more recently the subarachnoid 
lymphatic-like membrane (SLYM).94

•	 In these structures, blood-borne resident immune cells 
create specialised immune niches involved in brain de-
velopment, homeostasis and protection.

•	 Immune cells associated with T2-immunity, such as 
MCs, ILC2, B-cells and Th2-cells, can be found in these 
barriers.95

•	 IL-33, IL-13, and IL-4, which are T2-immunity-related sol-
uble factors, play a role in immune-related mechanisms 
associated with neuroprotection and neuroinflamma-
tion,95 such as modulating synaptic remodelling and 
activity.96,97

•	 Existing evidence suggests that peripheral allergic in-
flammation affects brain homeostasis (Figure 5).98

•	 Allergic sensitization in rodent models leads to rapid ac-
tivation of neuronal pathways,99,100 as well as Th1- and 
Th2-related gene expression,101,102 and accumulation of 
IgG and IgE in the brain parenchyma.103,104

•	 Studies have shown that peripheral allergic inflam-
mation in mouse models can activate microglia into a 

pro-inflammatory state induced with either timothy grass 
pollen,105 ovalbumin,106 fungal allergens107 or house dust 
mite.108

•	 Mice with asthma or AD demonstrate increased activa-
tion of microglia and astrocytes in the spinal cord.106

•	 Epigenetic changes have been detected in microglia 
obtained from the offspring of mothers with allergic 
asthma.109

•	 Emerging studies are investigating differences in brain ac-
tivity between allergic and non-allergic individuals.110,111

BOX 1 (Continued)
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    |  11TURNER et al.

for recurrent glioblastoma,117 though findings await confirmation 
in a larger study.

Various vaccination approaches have been tested, including 
single peptide-based vaccines like rindopepimut118 or dendritic 
cell-based vaccines such as ICT-107119 or DCVax,120 without clear 
efficacy. Novel approaches include recombinant fusion protein com-
posed of a human antibody fragment and human tumour necrosis 
factor (L19TNF) that use antibodies directed against embryonal fi-
bronectin to target cytokines to the tumour site.121 Finally, chimeric 
antigen receptor (CAR) T cells hold promise but in primary brain tu-
mours have not yet shown striking activity seen in some liquid can-
cers, primarily because of the lack of suitable highly expressed and 
tumour-specific antigens.

4  |  EPIDEMIOLOGIC AL ,  CLINIC AL AND 
PRE- CLINIC AL STUDIES OF ALLERGY AND 
GLIOMA

4.1  |  Studies of allergy and glioma risk

Several epidemiological studies and meta-analyses reported an 
approximate 30–40% decreased glioma risk associated with an al-
lergy history (Figure  5A), with stronger findings for high-grade 
glioma.7,122–124 Studies were often based on self-report or self-
reported physician-diagnosed allergies, which may be limited by 
patient or proxy recall biases, temporal variability of allergy symp-
toms or reverse causality in retrospective research.125 These studies 
often took into consideration a history of any allergy and/or specific 
allergies. In contrast, in some, but not all,126 studies based in hospi-
tal, healthcare, or population registries of allergy patients or medica-
tion users, there was either no clear association with primary brain 
or CNS tumours overall (including gliomas),127 or there were positive 
associations observed.127–129 Krishnamachari et al. demonstrated in-
verse associations of self-reported atopy history and glioma which 
varied by ethnicity.130 There were no clear associations between 
self-reported allergy history and brain tumour risk in recent studies 
in children and adolescents.131

There are also studies of allergy biomarkers, such as total and/
or sIgE and glioma. For example, pre-diagnosis concentrations 
of tIgE were inversely associated with glioma occurrence.132–134 
However, regular intake of some types of antihistamines in allergic 
populations has been reported to be associated with increased risk 
of glioma, although this has not been borne out in all studies, a 
phenomenon that may be dependent on the different types of an-
tihistamines evaluated.135 Histamine-H4 blocking drugs may mod-
erate CD4+ T-cell functions away from classical allergy-associated 
Th2 features and support forkhead box P3-positive (FOXP3+) 
Tregs.136,137 This could result in reduced production of cytokines 
such as IL-4, IL-5, IL-13, reduced B-cell class switching to IgE, which 
together would otherwise support inflammation and surveillance 
including to the CNS and against glioma.132,138,139 Consistent with 

this possibility are studies reporting key roles for IL-4 and acti-
vated eosinophils in glioma suppression, and systemic treatment 
with IL-4 transduced glioma cells engendering anti-tumour im-
munity against intracranial tumours.140–142 A nested case–control 
study by Schwartzbaum et al. reported that elevated IL-4 and solu-
ble IL-4 receptor alpha (sIL-4RA) prior to diagnosis was associated 
with a reduced glioma and glioblastoma risk, and that early glioma-
genesis affects circulating immune function proteins.138 In allergic 
state robust IL-4 and IL-13 responses could function via T-cell help 
to support class switching of B-cells to IgE, something that may be 
influenced by long-term exposure to some types of antihistamines. 
In accordance, a meta-analysis reported that increased concentra-
tions of total and respiratory allergen sIgE before tumour diagnosis 
were inversely associated with glioma risk.143 Zhou et al. reported 
significant inverse associations between CCL22 and glioma risk; 
however, CCL22 was not associated with self-reported allergy 
or IgE.144 Another study by Schwartzbaum et  al. reported posi-
tive associations of soluble IL-10 receptor subunit beta (sIL10RB), 
VEGF, beta-catenin and CCL22 and glioma risk among the 277 
pre-diagnostic cytokines evaluated.145 Collectively, studies may 
point to a potential contribution of classical Th2-immune features 
in some level of protective immune surveillance from glioma and 
CNS tumours.

A range of studies of SNPs of genes related to allergy reported 
some association with either glioma or glioblastoma risk and out-
come.146 Genetic variation of HLA was related to glioblastoma risk in 
a Korean study.147 A recent genome-wide association study (GWAS) 
study by Eckel-Passow et al. examined specific molecular subtypes 
of glioma based on IDH mutation, TERT mutation, and 1p/19q 
codeletion status.148 There were two new regions associated with 
specific glioma subtypes including a region in D2HGDH (which is also 
associated with allergy and asthma) that was associated with IDH-
mutant but not IDH-wildtype glioma.148 Mendelian randomization 
studies of genetically predicted allergic disease or serum tIgE gen-
erally reported no clear associations with glioma risk; one study re-
ported a positive association with glioblastoma.149–151 Ostrom et al. 
reported inverse correlations of the genetic architecture of autoim-
mune conditions and glioma, with increased activation of acquired 
immune traits (T-cells, NK-cells, myeloid cells) mediating susceptibil-
ity to glioma; however, there was no association of glioma and eosin-
ophil count or percentage, or with allergic/atopic traits (asthma, hay 
fever and eczema) which had lower heritability.152 They suggested 
that previous findings of protective effects of atopic traits may be 
driven by environmental factors.

4.2  |  Studies of allergy and glioma prognosis

Two studies reported better prognosis among glioma patients with 
a history of allergy; in one of these studies, this was shown to be in-
dependent of tumour mutational status (IDH).153,154 Prior history of 
asthma in patients with glioma was associated with higher mortality 
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12  |    TURNER et al.

risk,149 while elevated, versus normal or borderline, serum IgE levels 
were linked with longer survival. Furthermore, higher rates of posi-
tive penicillin skin tests and higher eosinophil counts were reported 
in patients with glioma compared with healthy controls.155,156

Elevated serum IgE levels and past history of allergies were 
less frequent in patients with glioma compared with healthy sub-
jects.88,132,157,158 The levels of plasma IgE were lower and especially 
in low-grade glioma compared with healthy controls, and increased 
plasma IgE during treatment correlated with better outcomes.152

Associations between allergy-related cytokines/chemokines 
and prognosis are generally restricted to gene polymorphisms, in-
cluding in IL-4Rα and IL-13.88,159 Allergy-related IL4R rs1805016 
and 1805015 (TT genotypes) were associated with long-term 
survival in high-grade glioma159 while IL-4Rα AA genotypes con-
ferred survival advantages in glioblastoma.88 Inverse correlations 
were reported between specific complement proteins and immu-
noglobulins in relation to glioma grade.160 Aberrant expression of 
some allergy-associated (e.g. IL-33)161 or anti-inflammatory cyto-
kines (e.g. IL-10 and162 TGF-β87), corresponded with poor prog-
nosis. Circulating CCL22 levels were associated with improved 
glioma survival, but were unrelated to allergy history or post-
diagnosis IgE.144

Overexpression of Th2-associated genes corresponding to Th2 
cell infiltration in GBM, were linked to worse glioma prognosis, while 
lower Th2-cell infiltration was associated with better prognosis.163 
AEC also appears to hold roles in predicting prognosis. Eosinophil-
based indices in glioblastoma were altered compared to controls 
and AEC were higher in groups with more favourable prognosis,164 
although a separate study found prognostic value of AEC only in 
low-grade glioma (LGG).165 Eosinophil activation has been positively 
linked to improved overall survival (OS)166; and increased AEC pre-
dicted shorter treatment duration with anti-VEGF antibody and 
more favourable progression-free survival.167 Accordingly, lower 
AEC correlated with shorter OS168 and AEC falls rapidly as glioma 
grade increases.169 Observations for basophils are inconsistent and 
limited to a few studies.164,170 MC activation was positively linked 
to OS,166 including prognostic MC-related genes in predicting sur-
vival.171 However, increased infiltrating MCs are detectable in GBM 
compared to LGG.172

Antihistamine usage was reported to have little impact on 
survival or prognosis, although further research is required.135 
Cancer patients' OS rates suffer when first-line treatment options 
are restricted because of drug-related hypersensitivity reactions. 
However, there is little information regarding glioma patients with 
drug allergies to their initial treatment compared with non-allergic 
glioma patients. Continuing carboplatin and temozolomide treat-
ment after a hypersensitivity reaction using a drug desensitization 
protocol is safe and effective.173

Overall, higher IgE levels and past history of allergies were less 
frequent in patients with glioma, while allergy history, higher serum 
levels of IgE, certain polymorphisms to IL-4Rα, eosinophils, acti-
vated eosinophils and MCs appeared to be linked to more favour-
able prognosis in patients. Contrastingly, asthma, Th-2-associated 

cell and mediator genes such as IL-33 were linked to worse clinical 
outcomes. One limitation lies with the variable allergy assessment 
method. Further prospective research using additional established 
and emerging allergy biomarkers are required (Box 2).

BOX 2 Research questions for new studies in 
allergy and glioma risk, prognosis and treatment.

•	 What are the most relevant and promising new al-
lergy biomarkers for future AllergoOncology studies in 
glioma?

•	 What is the most relevant allergic phenotype, genotype 
or endotype for glioma?

•	 Is the association of allergy and glioma most relevant for 
a specific glioma subtype?

•	 What is the association of allergy and glioma in large-
scale prospective studies with comprehensive and 
objectively measured allergy biomarkers across the 
lifecourse using both systematic and agnostic analysis 
methods?

•	 Are tIgE and/or sIgE involved in glioma immunosur-
veillance and or immunoediting? What are the optimal 
threshold of IgE concentration?

•	 What is the association of allergy and glioma in broader 
geographically diverse populations with different ge-
netic backgrounds and environmental exposures?

•	 What is the impact of climate-related changes in allergen 
exposure, allergy and glioma?

•	 What is the impact of anti-allergic therapies (including 
AIT), including their interactions, in allergy and glioma?

•	 What are the most relevant allergy biomarkers for 
monitoring immune–glioma interactions and treatment 
response?

•	 Can next-generation AllergoOncology research develop 
an allergy-related immunoscore for the prediction of re-
currence and/or response to therapeutics?

•	 How can patient records, registries and databases cap-
ture the most relevant AllergoOncology data for future 
research?

•	 What is the impact of allergy on brain immunology in the 
context of glioma?

•	 Does the phenomenon of trained immunity, which 
is associated with the initiation of allergic diseases 
or influenced by allergic responses, exhibit a distin-
guishable and specific role in the process of glioma 
elimination? Can improved allergy and glioma thera-
peutic options be developed based on findings in 
AllergoOncology?

•	 Is research and knowledge of allergic disorders and gli-
oma relevant to other priority cancer types?
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4.3  |  Pre-clinical studies of allergy and glioma

Two recent studies reported that allergic airway inflammation (AAI) 
could delay the progression of experimental LGG174 and high-grade 
gliomas (HGG).108 Chatterjee et  al. used a genetically engineered 
mouse model of neurofibromatosis type-1-associated optic path-
way gliomas (NF1-OPGs) and showed that experimental asthma 
induction inhibited glioma formation via reduced expression of the 
microglia-produced optic glioma mitogen, CCL5. Inhibition of CCL5 

synthesis by microglia was mediated through increased T-cell ex-
pression of decorin. Decorin inhibited CCL5 production through 
reduced microglia nuclear factor ‘kappa-light-chain-enhancer’ of ac-
tivated B-cell (NFκB) signalling.174

Poli et al. demonstrated that AAI delays glioblastoma progression 
in GL261-bearing mice, increasing survival and providing an alter-
native preclinical model to study the impact of allergy.108 AAI es-
tablishment led to the activation of microglia into pro-inflammatory 
and antigen-presenting cells, as well as increased infiltration of CD4+ 

F I G U R E  6  Future research in AllergoOncology. (A) This panel highlights potential directions for future investigations into the 
relationship between allergies and brain immunology in the context of gliomagenesis. Emphasis is placed on studying glioma risk, 
prognosis and treatment response. (B) Biomarker-driven analysis, utilizing current and upcoming clinically relevant markers for allergies, 
can aid in defining patient phenotypes and endotypes. Coupled with the sub-classification of gliomas based on integrated diagnosis 
(refer to Table 1), this approach holds the potential to address various unanswered questions in the field (as described in Box 2). (C) 
Next-generation AllergoOncology studies could incorporate the use of relevant biomarkers for allergy and glioma classification, 
particularly in large patient cohorts. It is essential to establish high-resolution epidemiological cohorts with comprehensive individual 
characteristics (including demographics, medical records with comorbidity and treatment information), as well as biospecimens (such 
as blood, serum, faeces, PBMC and hair) collected over the lifetime or at aetiologically relevant time points. This will enable integrated 
multi-omics analysis. (D) Innovative in vitro and in vivo models are necessary to further elucidate the causative molecular mechanisms 
underlying AllergoOncology. Stratification approaches can play a crucial role in fulfilling these research needs. (E) The ultimate objective 
is to sustain the development of innovative clinical trials aimed at advancing new therapeutics in the field of AllergoOncology. Created 
with « BioRe​nder.​com». IDH, isocitrate dehydrogenase; SNP, single-nucleotide polymorphisms; WGS, whole-genome sequencing. PBMC, 
Peripheral blood mononuclear cells.
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14  |    TURNER et al.

T-cells in the TME. In addition, mice with deficient adaptive immu-
nity (RAG1-KO) indicated abrogation of allergic protection effects 
against glioblastoma.108

These findings suggest an interplay between the local innate im-
mune system, specifically microglia, and the systemic adaptive im-
mune system, particularly T-cell responses, in eradicating cancerous 
cells that develop in the brain in the context of allergic inflammation.

5  |  FUTURE RESE ARCH IN 
ALLERGOONCOLOGY

Opportunities exist for future investigation of allergy and glioma 
risk, prognosis and treatment response (Box  2, Figure  6A). More 
studies using clinically relevant allergy biomarkers and updated sub-
classification information on gliomas are needed to define patient 
phenotypes, endotypes and genotypes (Figure 6B, Table 1).

Future large-scale prospective studies with comprehensive 
allergy biomarkers measured over the lifecourse are necessary to 
examine relevant points in aetiology (Figure 6C). Integrating expo-
some approaches may be particularly valuable.175 The concept of 
the exposome highlights the critical need for more complete envi-
ronmental exposure assessment in epidemiological studies, that is, 
the broad context of ‘non-genetic’ environmental factors. It com-
plements the genome by providing a comprehensive description of 
lifelong exposure history.

It is unclear whether the reported inverse associations between 
allergy and glioma will be confirmed in additional prospective studies 
and whether they are specific to particular allergic disorders and/or 
allergens or glioma subtypes. Further understanding will be required 
to define the most relevant allergy biomarkers during early glioma for-
mation and response to treatment, and for which types of gliomas or 
subtypes. Harmonizing and pooling data from new and existing stud-
ies would enhance the power to explore associations, especially given 
glioma's rarity. There are also other emerging AllergoOncology bio-
markers including deficiency of IgE5 or serum IgG4/IgE ratios176 that 
may be relevant to monitor in glioma. Existing epidemiological studies 
are primarily conducted in Europe and North America, necessitating 
research in diverse geographical settings to account for environmen-
tal/allergen exposures and population profiles. Future studies are 
needed to clarify the prognostic role and personalized implications of 
allergy for patients with glioma. To achieve this, targeted patient co-
horts with information on allergy and allergy-related biomarkers are 
needed to evaluate the prognostic value of different types of allergies 
and their effect on anti-cancer therapy response. This is especially rel-
evant regarding immunotherapy response or cancer vaccines, exem-
plified in a recent study reporting that the allergy mediator histamine 
confers resistance to immunotherapy in cancer patients via activation 
of the macrophage histamine receptor H1.177

Finally, in-depth understanding of cellular and molecular ef-
fects that may be shared between allergic diseases and gliomas 
is needed. Innovative in  vitro and in  vivo models are needed to 

further elucidate potential causative molecular mechanisms and 
stratification in AllergoOncology in relation to glioma (Figure 6D). 
Understanding the mechanisms of allergic inflammation on brain 
homeostasis is limited, with few studies investigating the influence 
of systemic Th2 allergic immune response on CNS dysfunction 
(Box 1 and Figure 5). Studies indicate that allergy may impact brain 
homeostasis and induce neuro-inflammation that subsequently 
could result in a range of neurological effects, including those of 
relevance for glioma risk and progression. Inflammatory manifes-
tations in the brain during viral infections, such as long COVID, 
are documented.178 Further studies on the intricate relationship 
between allergic inflammation and various brain border immune 
niches is crucial for comprehending the impact of allergies on brain 
function and may point to potential therapeutic strategies for CNS 
disorders including glioma. While the synergy between the im-
mune system, the peripheral and CNS is increasingly appreciated 
as a regulator of both allergic diseases179 and glioma,180 the impact 
of immune cells with regard to the association between both pa-
thologies remains to be explored.

6  |  CONCLUSION

In this Position Paper, we review recent advances in allergy and 
glioma heterogeneity, underlining innovative opportunities for 
translational research. Future epidemiological AllergoOncology 
research could capitalise upon modern atopy-related biomarkers 
for assessment in glioma development and clinical outcomes and 
potentially elucidate underlying molecular and cellular mecha-
nisms. Efforts to systematically record real-world data and novel 
biomarkers relevant to allergy and cancer risk are needed, includ-
ing in cohorts, registries and in medical records. Collecting atopy-
related data for monitoring immunosuppression-related changes 
in cancer patients is also needed. Relevant studies accounting for 
immune system heterogeneity, glioma diversity and specific aller-
gic conditions may provide improved insights into the complex al-
lergy–glioma relationship.
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