[en] Collaborative Simultaneous Localization and Mapping (CSLAM) is critical to
enable multiple robots to operate in complex environments. Most CSLAM
techniques rely on raw sensor measurement or low-level features such as
keyframe descriptors, which can lead to wrong loop closures due to the lack of
deep understanding of the environment. Moreover, the exchange of these
measurements and low-level features among the robots requires the transmission
of a significant amount of data, which limits the scalability of the system. To
overcome these limitations, we present Multi S-Graphs, a decentralized CSLAM
system that utilizes high-level semantic-relational information embedded in the
four-layered hierarchical and optimizable situational graphs for cooperative
map generation and localization while minimizing the information exchanged
between the robots. To support this, we present a novel room-based descriptor
which, along with its connected walls, is used to perform inter-robot loop
closures, addressing the challenges of multi-robot kidnapped problem
initialization. Multiple experiments in simulated and real environments
validate the improvement in accuracy and robustness of the proposed approach
while reducing the amount of data exchanged between robots compared to other
state-of-the-art approaches.
Software available within a docker image:
https://github.com/snt-arg/multi_s_graphs_docker
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Fernandez-Cortizas, Miguel
BAVLE, Hriday ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Perez-Saura, David
SANCHEZ LOPEZ, Jose Luis ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Campoy, Pascual
VOOS, Holger ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Multi S-Graphs: an Efficient Real-time Distributed Semantic-Relational Collaborative SLAM
Date de publication/diffusion :
janvier 2024
Titre du périodique :
IEEE Robotics and Automation Letters
eISSN :
2377-3766
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
P. Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “DOOR-SLAM: Distributed, online, and outlier resilient SLAM for robotic teams,” IEEE Robot. Automat. Lett., vol. 5, no. 2, pp. 1656-1663, Apr. 2020.
S. Zhong, Y. Qi, Z. Chen, J. Wu, H. Chen, and M. Liu, “DCL-SLAM: A distributed collaborative LiDAR SLAM framework for a robotic swarm,” IEEE Sensors J., vol. 24, no. 4, pp. 4786-4797, Feb. 2024.
Y. Huang, T. Shan, F. Chen, and B. Englot, “DiSCo-SLAM: Distributed scan context-enabled multi-robot LiDAR SLAM with two-stage global-local graph optimization,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 1150-1157, Apr. 2022.
R. Azzam, T. Taha, S. Huang, and Y. Zweiri, “Feature-based visual simultaneous localization and mapping: A survey,” SN Appl. Sci., vol. 2, pp. 1-24, 2020.
J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan, “Pairwise consistent measurement set maximization for robust multi-robot map merging,” in Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 2916-2923.
N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial perception system for 3D scene graph construction and optimization,” in Proc. Robot.: Sci. Syst., 2022.
H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos, “Situational graphs for robot navigation in structured indoor environments,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 9107-9114, Oct. 2022.
H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos, “S-Graphs+: Real-time localization and mapping leveraging hierarchical representations,” IEEE Robot. Automat. Lett., vol. 8, no. 8, pp. 4927-4934, Aug. 2023.
Y. Chang, N. Hughes, A. Ray, and L. Carlone, “Hydra-Multi: Collaborative online construction of 3D scene graphs with multi-robot teams,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023, pp. 10995-11002.
E. Greve, M. Büchner, N. Vödisch, W. Burgard, and A. Valada, “Collaborative dynamic 3D scene graphs for automated driving,” 2023, arXiv:2309.06635.
Y. Chang et al., “LAMP 2.0: A robust multi-robot SLAM system for operation in challenging large-scale underground environments,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 9175-9182, Oct. 2022.
A. Cramariuc et al., “maplab 2.0-a modular and multi-modal mapping framework,” IEEE Robot. Automat. Lett., vol. 8, no. 2, pp. 520-527, Feb. 2023.
M. Patel, M. Karrer, P. Bänninger, and M. Chli, “COVINS-G: A generic back-end for collaborative visual-inertial SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2023, pp. 2076-2082.
P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli, “COVINS: Visual-inertial SLAM for centralized collaboration,” in Proc. IEEE Int. Symp. Mixed Augmented Reality Adjunct, 2021, pp. 171-176.
I. Deutsch, M. Liu, and R. Siegwart, “A framework for multi-robot pose graph SLAM,” in Proc. IEEE Int. Conf. Real-Time Comput. Robot., 2016, pp. 567-572.
Y. Tian, Y. Chang, F. Herrera Arias, C. Nieto-Granda, J. P. How, and L. Carlone, “Kimera-multi: Robust, distributed, dense metric-semantic SLAM for multi-robot systems,” IEEE Trans. Robot., vol. 38, no. 4, pp. 2022-2038, Aug. 2022.
A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: An open-source library for real-time metric-semantic localization and mapping,” in Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 1689-1696.
P.-Y. Lajoie and G. Beltrame, “Swarm-SLAM: Sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems,” IEEE Robot. Automat. Lett., vol. 9, no. 1, pp. 475-482, 2024, doi: 10.1109/LRA.2023.3333742.
G. Berton, C. Masone, and B. Caputo, “Rethinking visual GEO-localization for large-scale applications,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 4868-4878.
R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD: CNN architecture for weakly supervised place recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1437-1451, Jun. 2018.
G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for place recognition within 3D point cloud map,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 4802-4809.
Y. Wang, Z. Sun, C.-Z. Xu, S. E. Sarma, J. Yang, and H. Kong, “LiDAR iris for loop-closure detection,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020, pp. 5769-5775.
P. Bänninger, I. Alzugaray, M. Karrer, and M. Chli, “Cross-agent relocalization for decentralized collaborative SLAM,” in Proc. IEEE Int. Conf. Robot. Automat., 2023, pp. 5551-5557.
J. Yu and S. Shen, “SemanticLoop: Loop closure with 3D semantic graph matching,” IEEE Robot. Automat. Lett., vol. 8, no. 2, pp. 568-575, Feb. 2023.
Y. Tao, X. Liu, I. Spasojevic, S. Agarwal, and V. Kumar, “3D active metric-semantic SLAM,” IEEE Robot. Automat. Lett., vol. 9, no. 3, pp. 2989-2996, Mar. 2024.
R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena, “SegMap: 3D segment mapping using data-driven descriptors,” in Proc. Robot.: Sci. Syst., 2018.
S. Yu, C. Fu, A. K. Gostar, and M. Hu, “A review on map-merging methods for typical map types in multiple-ground-robot SLAM solutions,” Sensors, vol. 20, no. 23, 2020, Art. no. 6988.
J. Vaščák and D. Herich, “Map merging for multi-robotic applications,” in Proc. IEEE 21st World Symp. Appl. Mach. Intell. Inform., 2023, pp. 000021-000026.
K. M. Frey, T. J. Steiner, and J. P. How, “Efficient constellation-based map-merging for semantic SLAM,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 1302-1308.
A. Prabhu et al., “UAVs for forestry: Metric-semantic mapping and diameter estimation with autonomous aerial robots,” Mech. Syst. Signal Process., vol. 208, 2024, Art. no. 111050.
K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP for fast and accurate 3D point cloud registration,” in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 11054-11059.