Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
An Integrated Real-time UAV Trajectory Optimization and Potential Field Approach for Dynamic Collision Avoidance
DASARI, Mohan; HABIBI, Hamed; SANCHEZ LOPEZ, Jose Luis et al.
2023In 2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023
Peer reviewed
 

Documents


Texte intégral
An_Integrated_Real-time_UAV_Trajectory_Optimization_and_Potential_Field_Approach_for_Dynamic_Collision_Avoidance.pdf
Postprint Auteur (1.76 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artificial Potential Field; Dynamic Collision Avoidance; Pseudospectral Method; Trajectory Optimization; UAV; Aerial vehicle; Artificial potential fields; Artificial potential fields method; Collisions avoidance; Dynamic collision avoidances; Pseudospectral methods; Real- time; Trajectory optimization; Unmanned aerial vehicle; Vehicle trajectories; Control and Optimization; Aerospace Engineering
Résumé :
[en] This paper presents an integrated approach that combines trajectory optimization and Artificial Potential Field (APF) method for real-time optimal Unmanned Aerial Vehicle (UAV) trajectory planning and dynamic collision avoidance. A minimum-time trajectory optimization problem is formulated with initial and final positions as boundary conditions and collision avoidance as constraints. It is transcribed into a nonlinear programming problem using Chebyshev pseudospectral method. The state and control histories are approximated by using Lagrange polynomials and the collocation points are used to satisfy constraints. A novel sigmoid-type collision avoidance constraint is proposed to overcome the drawbacks of Lagrange polynomial approximation in pseudospectral methods that only guarantees inequality constraint satisfaction only at nodal points. Automatic differentiation of cost function and constraints is used to quickly determine their gradient and Jacobian, respectively. An APF method is used to update the optimal control inputs for guaranteeing collision avoidance. The trajectory optimization and APF method are implemented in a closed-loop fashion continuously, but in parallel at moderate and high frequencies, respectively. The initial guess for the optimization is provided based on the previous solution. The proposed approach is tested and validated through indoor experiments.Experiment video link: https://youtu.be/swSspfvYjJs
Disciplines :
Ingénierie électrique & électronique
Sciences informatiques
Auteur, co-auteur :
DASARI, Mohan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
HABIBI, Hamed  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
An Integrated Real-time UAV Trajectory Optimization and Potential Field Approach for Dynamic Collision Avoidance
Date de publication/diffusion :
2023
Nom de la manifestation :
2023 International Conference on Unmanned Aircraft Systems (ICUAS)
Lieu de la manifestation :
Warsaw, Pologne
Date de la manifestation :
06-06-2023 => 09-06-2023
Titre de l'ouvrage principal :
2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
ISBN/EAN :
9798350310375
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 101017258 - SESAME - Secure and Safe Multi-Robot Systems
Projet FnR :
FNR13713801 - Interconnecting The Sky In 5g And Beyond - A Joint Communication And Control Approach, 2019 (01/06/2020-31/05/2023) - Bjorn Ottersten
Organisme subsidiant :
Union Européenne
Subventionnement (détails) :
D. M. K. K. Venkateswara Rao, H. Habibi, J. L. Sanchez-Lopez, and H. Voos are with Automation and Robotics Research Group, Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg. H. Voos is also with Faculty of Science, Technology and Medicine (FSTM), Department of Engineering, University of Luxembourg, {mohan.dasari,hamed.habibi,holger.voos, joseluis.sanchezlopez}@uni.lu *This research was partially supported by the European Union’s Horizon 2020 project Secure and Safe Multi-Robot Systems (SESAME) under the grant agreement no. 101017258 and by the Department of Media, Telecommunications and Digital Policy (SMC) of the Government of the Gran Duchy of Luxembourg under the project reference SMC/CFP-2019/010/IRANATA, ”Interference and RAdiation in Network PlAnning of 5G AcTive Antenna Systems,” and Fonds National de la Recherche of Luxembourg (FNR), under the projects C19/IS/13713801/5G-Sky.This research was partially supported by the European Union s Horizon 2020 project Secure and Safe Multi-Robot Systems (SESAME) under the grant agreement no. 101017258 and by the Department of Media, Telecommunications and Digital Policy (SMC) of the Government of the Gran Duchy of Luxembourg under the project reference SMC/CFP-2019/010/IRANATA, Interference and RAdiation in Network PlAnning of 5G AcTive Antenna Systems, and Fonds National de la Recherche of Luxembourg (FNR), under the projects C19/IS/13713801/5G-Sky.
Disponible sur ORBilu :
depuis le 21 novembre 2023

Statistiques


Nombre de vues
139 (dont 6 Unilu)
Nombre de téléchargements
125 (dont 0 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
5
OpenCitations
 
1
citations OpenAlex
 
8

Bibliographie


Publications similaires



Contacter ORBilu