[en] Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Disciplines :
Biotechnology
Author, co-author :
Gawron, Piotr; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
Hoksza, David; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg ; Faculty of Mathematics and Physics, Charles University, Prague, Czechia
Piñero, Janet; Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain ; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain ; MedBioinformatics Solutions SL, Barcelona, Spain
Peña-Chilet, Maria; Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain ; Spanish Network of Research in Rare Diseases (CIBERER), Sevilla, Spain
Esteban-Medina, Marina; Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain
Fernandez-Rueda, Jose Luis; Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain
Colonna, Vincenza; Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Rome ; Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
Smula, Ewa; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
HEIRENDT, Laurent ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Ancien, François; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
GROUES, Valentin ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
SATAGOPAM, Venkata ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
SCHNEIDER, Reinhard ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Dopazo, Joaquin; Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain ; Spanish Network of Research in Rare Diseases (CIBERER), Sevilla, Spain
Furlong, Laura I; Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain ; Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain ; MedBioinformatics Solutions SL, Barcelona, Spain
OSTASZEWSKI, Marek ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
This work was conceptualized and prototyped during the BioHackathon Europe, organized and funded by the ELIXIR Hub in November 2019 in Paris. We thank the organizers for an opportunity to participate in such a productive and collaborative event. We thank Steve Laurie, Centro Nacional de Análisis Genómico (CNAG-CRG), Barcelona, Spain, for support in the domains of rare disease phenotyping and genomics. The work presented in this paper was carried out using the ELIXIR Luxembourg tools and services.
Adams N. A. Awadein A. Toma H. S. (2007). The retinal ciliopathies. Ophthalmic Genet. 28, 113–125. 10.1080/13816810701537424
Ayuso C. Millan J. M. (2010). Retinitis pigmentosa and allied conditions today: A paradigm of translational research. Genome Med. 2, 34. 10.1186/gm155
Balci H. Siper M. C. Saleh N. Safarli I. Roy L. Kilicarslan M. et al. (2021). Newt: A comprehensive web-based tool for viewing, constructing and analyzing biological maps. Bioinformatics 37, 1475–1477. 10.1093/bioinformatics/btaa850
Bales K. L. Gross A. K. (2016). Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp. Eye Res. 150, 71–80. 10.1016/j.exer.2015.11.007
Bijnens J. Missiaen L. Bultynck G. Parys J. B. (2018). A critical appraisal of the role of intracellular Ca2+-signaling pathways in Kawasaki disease. Cell Calcium 71, 95–103. 10.1016/j.ceca.2018.01.002
Bukulmez H. (2021). Current understanding of multisystem inflammatory syndrome (MIS-C) following COVID-19 and its distinction from Kawasaki disease. Curr. Rheumatol. Rep. 23, 58. 10.1007/s11926-021-01028-4
Carvalho-Silva D. Pierleoni A. Pignatelli M. Ong C. Fumis L. Karamanis N. et al. (2019). Open targets platform: New developments and updates two years on. Nucleic Acids Res. 47, D1056–D1065. 10.1093/nar/gky1133
Chakraborty D. Strayve D. G. Makia M. S. Conley S. M. Kakahel M. Al-Ubaidi M. R. et al. (2020). Novel molecular mechanisms for Prph2-associated pattern dystrophy. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 34, 1211–1230. 10.1096/fj.201901888r
Côté R. Reisinger F. Martens L. Barsnes H. Vizcaino J. A. Hermjakob H. (2010). The Ontology Lookup service: Bigger and better. Nucleic Acids Res. 38, W155–W160. 10.1093/nar/gkq331
Csardi G. Nepusz T. (2006). The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9.
Cunningham F. Allen J. E. Allen J. Alvarez-Jarreta J. Amode M. R. Im A. et al. (2022). Ensembl 2022. Nucleic Acids Res. 50, D988–D995. 10.1093/nar/gkab1049
D’Alessandro E. Kawasaki A. Eandi C. M. (2022). Pathogenesis of vascular retinal manifestations in COVID-19 patients: A review. Biomedicines 10, 2710. 10.3390/biomedicines10112710
Davis S. Geoquery P. S. M. (2007). GEOquery: A bridge between the gene expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847. 10.1093/bioinformatics/btm254
Ferrari S. Di Iorio E. Barbaro V. Ponzin D. Sorrentino F. S. Parmeggiani F. (2011). Retinitis pigmentosa: Genes and disease mechanisms. Curr. Genomics 12, 238–249. 10.2174/138920211795860107
Frontiers (2021). Pre-mRNA processing factors and retinitis pigmentosa: RNA splicing and beyond. https://www.frontiersin.org/articles/10.3389/fcell.2021.700276/full.
Fu Z. Sun Y. Cakir B. Tomita Y. Huang S. Wang Z. et al. (2020). Targeting neurovascular interaction in retinal disorders. Int. J. Mol. Sci. 21, 1503 10.3390/ijms21041503
Fujita K. A. Ostaszewski M. Matsuoka Y. Ghosh S. Glaab E. Trefois C. et al. (2014). Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 49, 88–102. 10.1007/s12035-013-8489-4
Gawron P. Ostaszewski M. Satagopam V. Gebel S. Mazein A. Kuzma M. et al. (2016). MINERVA-a platform for visualization and curation of molecular interaction networks. NPJ Syst. Biol. Appl. 2, 16020. 10.1038/npjsba.2016.20
Gawron P. Smula E. Schneider R. Ostaszewski M. (2023). Exploration and comparison of molecular mechanisms across diseases using MINERVA Net. Protein Sci. 32, e4565. 10.1002/pro.4565
Gillespie M. Jassal B. Stephan R. Milacic M. Rothfels K. Senff-Ribeiro A. et al. (2022). The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692. 10.1093/nar/gkab1028
Giryes S. McGonagle D. (2023). Immune and non-immune mechanisms that determine vasculitis and coronary artery aneurysm topography in Kawasaki disease and MIS-C. Autoimmun. Rev. 22, 103240. 10.1016/j.autrev.2022.103240
Hoksza D. Gawron P. Ostaszewski M. Hausenauer J. Schneider R. (2019). Closing the gap between formats for storing layout information in systems biology. Brief. Bioinform 21. 10.1093/bib/bbz067
Hoksza D. Gawron P. Ostaszewski M. Schneider R. (2018). MolArt: A molecular structure annotation and visualization tool. Bioinforma. Oxf Engl. 34, 4127–4128. 10.1093/bioinformatics/bty489
Hoksza D. Gawron P. Ostaszewski M. Smula E. Schneider R. (2019). MINERVA API and plugins: Opening molecular network analysis and visualization to the community. Bioinforma. Oxf Engl. 35, 4496–4498. 10.1093/bioinformatics/btz286
Ichhpujani P. Parmar U. P. S. Duggal S. Kumar S. (2022). COVID-19 vaccine-associated ocular adverse effects: An overview. Vaccines 10, 1879. 10.3390/vaccines10111879
Kitano H. Funahashi A. Matsuoka Y. Oda K. (2005). Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23, 961–966. 10.1038/nbt1111
Köhler S. Gargano M. Matentzoglu N. Carmody L. C. Lewis-Smith D. Vasilevsky N. A. et al. (2021). The human phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217. 10.1093/nar/gkaa1043
Kuleshov M. V. Jones M. R. Rouillard A. D. Fernandez N. F. Duan Q. Wang Z. et al. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97. 10.1093/nar/gkw377
Kumrah R. Vignesh P. Rawat A. Singh S. (2020). Immunogenetics of Kawasaki disease. Clin. Rev. Allergy Immunol. 59, 122–139. 10.1007/s12016-020-08783-9
Landrum M. J. Lee J. M. Benson M. Brown G. R. Chao C. Chitipiralla S. et al. (2018). ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067. 10.1093/nar/gkx1153
Lei W.-T. Hsu C.-W. Chen P.-C. Tseng P. Kuo H.-C. Guo M. M.-H. et al. (2021). Increased risk of asthma and allergic rhinitis in patients with a past history of Kawasaki disease: A systematic review and meta-analyses. Front. Pediatr. 9, 746856. 10.3389/fped.2021.746856
Liu T. Salguero P. Petek M. Martinez-Mira C. Balzano-Nogueira L. Ramšak Ž. et al. (2022). PaintOmics 4: New tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res. gkac352 50, W551–W559. 10.1093/nar/gkac352
Liu X. Xu K. Tao X. Yin R. Ren G. Yu M. et al. (2022). ExpressVis: A biologist-oriented interactive web server for exploring multi-omics data. Nucleic Acids Res. gkac399 50, W312–W321. 10.1093/nar/gkac399
Malone J. Holloway E. Adamusiak T. Kapushesky M. Zheng J. Kolesnikov N. et al. (2010). Modeling sample variables with an experimental factor Ontology. Bioinforma. Oxf Engl. 26, 1112–1118. 10.1093/bioinformatics/btq099
Mannu G. S. (2014). Retinal phototransduction. Retin. Phototransduction. Neurosci. 19, 275–280.
Martens M. Ammar A. Riutta A. Waagmeester A. Slenter D. N. Hanspers K. et al. (2021). WikiPathways: Connecting communities. Nucleic Acids Res. 49, D613–D621. 10.1093/nar/gkaa1024
Mazein A. Ivanova O. Balaur I. Ostaszewski M. Berzhitskaya V. Serebriyskaya T. et al. (2021). AsthmaMap: An interactive knowledge repository for mechanisms of asthma. J. Allergy Clin. Immunol. 147, 853–856. 10.1016/j.jaci.2020.11.032
Mazein A. Ostaszewski M. Kuperstein I. Watterson S. Le Novère N. Lefaudeux D. et al. (2018). Systems medicine disease maps: Community-driven comprehensive representation of disease mechanisms. NPJ Syst. Biol. Appl. 4, 21. 10.1038/s41540-018-0059-y
McLaren W. Gil L. Hunt S. E. Riat H. S. Ritchie G. R. S. Thormann A. et al. (2016). The Ensembl variant effect predictor. Genome Biol. 17, 122. 10.1186/s13059-016-0974-4
Orpha (1997). Orphanet: An online database of rare diseases and orphan drugs copyright INSERM. Available at http://www.orpha.net.
Ortega J. T. Jastrzebska B. (2021). Neuroinflammation as a therapeutic target in retinitis pigmentosa and quercetin as its potential modulator. Pharmaceutics 13, 1935. 10.3390/pharmaceutics13111935
Ostaszewski M. Niarakis A. Mazein A. Kuperstein I. Phair R. Orta-Resendiz A. et al. (2021). COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Mol. Syst. Biol. 17, e10387. 10.15252/msb.202110387
Piñero J. Ramírez-Anguita J. M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. et al. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845–D855. 10.1093/nar/gkz1021
Makino N. Kuwabara M. Matsubara Y. Kosami K. Sasahara T. et al. (2022). Incidence of Kawasaki disease before and after the COVID-19 pandemic in Japan: Results of the 26th nationwide survey, 2019 to 2020. JAMA Pediatr. 176, 1217. 10.1001/jamapediatrics.2022.3756
Robinson M. D. McCarthy D. J. Smyth G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. 10.1093/bioinformatics/btp616
Rodchenkov I. Babur O. Luna A. Aksoy B. A. Wong J. V. Fong D. et al. (2019). Pathway commons 2019 update: Integration, analysis and exploration of pathway data. Nucleic Acids Res. gkz946 48, D489–D497. 10.1093/nar/gkz946
Rodrigues A. Slembrouck-Brec A. Nanteau C. Terray A. Tymoshenko Y. Zagar Y. et al. (2022). Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. Npj Regen. Med. 7, 39. 10.1038/s41536-022-00235-6
Saito K. Gotoh N. Kang I. Shimada T. Usui T. Terao C. (2021). A case of retinitis pigmentosa homozygous for a rare CNGA1 causal variant. Sci. Rep. 11, 4681. 10.1038/s41598-021-84098-9
Sakurai Y. (2019). Autoimmune aspects of Kawasaki disease. J. Investig. Allergol. Clin. Immunol. 29, 251–261. 10.18176/jiaci.0300
Singh V. Kalliolias G. D. Ostaszewski M. Veyssiere M. Pilalis E. Gawron P. et al. (2020). RA-Map: Building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database J. Biol. Databases Curation 2020, baaa017. 10.1093/database/baaa017
Szklarczyk D. Gable A. L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. et al. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. 10.1093/nar/gky1131
Türei D. Korcsmáros T. Saez-Rodriguez J. (2016). OmniPath: Guidelines and gateway for literature-curated signaling pathway resources. Nat. Methods 13, 966–967. 10.1038/nmeth.4077
Vanderkam D. Aksoy B. A. Hodes I. Perrone J. Hammerbacher J. (2016). pileup.js: a JavaScript library for interactive and in-browser visualization of genomic data. Bioinforma. Oxf Engl. 32, 2378–2379. 10.1093/bioinformatics/btw167
Yang J. Dong C. Duan H. Shu Q. Li H. (2021). RDmap: A map for exploring rare diseases. Orphanet J. Rare Dis. 16, 101. 10.1186/s13023-021-01741-4