[en] Cystic fibrosis (CF) is a life-threatening autosomal recessive disease caused by more than 2100 mutations in the CF transmembrane conductance regulator (CFTR) gene, generating variability in disease severity among individuals with CF sharing the same CFTR genotype. Systems biology can assist in the collection and visualization of CF data to extract additional biological significance and find novel therapeutic targets. Here, we present the CyFi-MAP-a disease map repository of CFTR molecular mechanisms and pathways involved in CF. Specifically, we represented the wild-type (wt-CFTR) and the F508del associated processes (F508del-CFTR) in separate submaps, with pathways related to protein biosynthesis, endoplasmic reticulum retention, export, activation/inactivation of channel function, and recycling/degradation after endocytosis. CyFi-MAP is an open-access resource with specific, curated and continuously updated information on CFTR-related pathways available online at https://cysticfibrosismap.github.io/ . This tool was developed as a reference CF pathway data repository to be continuously updated and used worldwide in CF research.
Disciplines :
Biotechnology
Author, co-author :
Pereira, Catarina; Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal ; LASIGE, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
MAZEIN, Alexander ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core ; CIRI UMR5308, CNRS-ENS-UCBL-INSERM, European Institute for Systems Biology and Medicine, Université de Lyon, 50 Avenue Tony Garnier, 69007, Lyon, France
Farinha, Carlos M; Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
Gray, Michael A; Biosciences Institute, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
Kunzelmann, Karl; Universität Regensburg, 9147, Regensburg, Germany
OSTASZEWSKI, Marek ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
BALAUR, Irina-Afrodita ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core ; CIRI UMR5308, CNRS-ENS-UCBL-INSERM, European Institute for Systems Biology and Medicine, Université de Lyon, 50 Avenue Tony Garnier, 69007, Lyon, France
Amaral, Margarida D; Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
Falcao, Andre O; Faculty of Sciences, BioISI-Biosystems Integrative Sciences Institute, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal. aofalcao@ciencias.ulisboa.pt ; LASIGE, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisbon, Portugal. aofalcao@ciencias.ulisboa.pt
External co-authors :
yes
Language :
English
Title :
CyFi-MAP: an interactive pathway-based resource for cystic fibrosis.
Fundação para a Ciência e a Tecnologia Innovative Medicines Initiative Seventh Framework Programme
Funding text :
The authors would like to thank the domain experts that participated in stimulating discussions and valuable feedback and to the colleagues from FunGP—Functional Genomics and Proteostasis who tested CyFi-MAP and provided valuable suggestions. Work in MDA lab is supported by UIDB/04046/2020 and UIDP/04046/2020 centre grants (to BioISI) from FCT/MCTES Portugal. CP was recipient of fellowship SFRH/PD/BD/131405/2017 and through funding of LASIGE Research Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020. AM and IB were supported in part by the Innovative Medicines Initiative Joint Undertaking under Grant Agreement No. IMI 115446 (eTRIKS), resources of which are composed of financial contributions from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies.
Micheel, C. M., Nass, S. J., Omenn, G. S. & Policy, H. S. Evolution of translational omics lessons learned and the path forward. Evolution 10.17226/13297 (2012). DOI: 10.17226/13297
Saqi, M. et al. Medicine: The future of medical genomics, healthcare, and wellness. In Methods in Molecular Biology (2016). https://doi.org/10.1007/978-1-4939-3283-2_3
Auffray, C., Chen, Z. & Hood, L. Systems medicine: The future of medical genomics and healthcare. Genome Med. 10.1186/gm2 (2009). DOI: 10.1186/gm2
Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 10.1093/nar/27.1.29 (1999). DOI: 10.1093/nar/27.1.29
Pico, A. R. et al. WikiPathways: Pathway editing for the people. PLoS Biol. 10.1371/journal.pbio.0060184 (2008). DOI: 10.1371/journal.pbio.0060184
Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 10.1093/nar/gkx1132 (2018). DOI: 10.1093/nar/gkx1132
Kutmon, M. et al. PathVisio 3: An extendable pathway analysis toolbox. PLoS Comput. Biol. 10.1371/journal.pcbi.1004085 (2015). DOI: 10.1371/journal.pcbi.1004085
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 10.1093/nar/gky962 (2019). DOI: 10.1093/nar/gky962
Cirillo, E., Parnell, L. D. & Evelo, C. T. A review of pathway-based analysis tools that visualize genetic variants. Front. Genet. 10.3389/fgene.2017.00174 (2017). DOI: 10.3389/fgene.2017.00174
Friend, S. H. & Norman, T. C. Metcalfe’s law and the biology information commons. Nat. Biotechnol. 10.1038/nbt.2555 (2013). DOI: 10.1038/nbt.2555
Mazein, A. et al. Systems medicine disease maps: Community-driven comprehensive representation of disease mechanisms. npj Syst. Biol. Appl. 10.1038/s41540-018-0059-y (2018). DOI: 10.1038/s41540-018-0059-y
Novère, N. L. et al. The systems biology graphical notation. Nat. Biotechnol. 27, 735–742 (2009). DOI: 10.1038/nbt.1558
Fujita, K. A. et al. Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 10.1007/s12035-013-8489-4 (2014). DOI: 10.1007/s12035-013-8489-4
Mizuno, S. et al. AlzPathway: A comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst. Biol. 10.1186/1752-0509-6-52 (2012). DOI: 10.1186/1752-0509-6-52
Mazein, A. et al. AsthmaMap: An expert-driven computational representation of disease mechanisms. Clin. Exp. Allergy 10.1111/cea.13211 (2018). DOI: 10.1111/cea.13211
Bonnet, E. et al. NaviCell Web Service for network-based data visualization. Nucleic Acids Res. 10.1093/nar/gkv450 (2015). DOI: 10.1093/nar/gkv450
Singh, V. et al. RA-map: Building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database J. Biol. Databases Curation 10.1093/database/baaa017 (2020). DOI: 10.1093/database/baaa017
Cystic Fibrosis Mutation Database. version October 2020; last update 25 April 2011. http://www.genet.sickkids.on.ca
Riordan, J. R. et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 10.1126/science.2475911 (1989). DOI: 10.1126/science.2475911
Lopes-Pacheco, M. CFTR modulators: The changing face of cystic fibrosis in the era of precision medicine. Front. Pharmacol. 10.3389/fphar.2019.01662 (2020). DOI: 10.3389/fphar.2019.01662
Bear, C. E. et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 10.1016/0092-8674(92)90155-6 (1992). DOI: 10.1016/0092-8674(92)90155-6
Jia, Y., Mathews, C. J. & Hanrahan, J. W. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem. 10.1074/jbc.272.8.4978 (1997). DOI: 10.1074/jbc.272.8.4978
Schultz, B. D., Singh, A. K., Devor, D. C. & Bridges, R. J. Pharmacology of CFTR chloride channel activity. Physiol. Rev. 10.1152/physrev.1999.79.1.S109 (1999). DOI: 10.1152/physrev.1999.79.1.S109
Haq, I. J., Gray, M. A., Garnett, J. P., Ward, C. & Brodlie, M. Airway surface liquid homeostasis in cystic fibrosis: Pathophysiology and therapeutic targets. Thorax 10.1136/thoraxjnl-2015-207588 (2016). DOI: 10.1136/thoraxjnl-2015-207588
Verkman, A. S., Song, Y. & Thiagarajah, J. R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Phys. Cell Physiol. 10.1152/ajpcell.00417.2002 (2003). DOI: 10.1152/ajpcell.00417.2002
World Health Organization (WHO). The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Gentzsch, M. et al. Endocytic trafficking routes of wild type and ΔF508 cystic fibrosis transmembrane conductance regulator. Mol. Biol. Cell 10.1091/mbc.E04-03-0176 (2004). DOI: 10.1091/mbc.E04-03-0176
Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 10.1038/ng.2745 (2013). DOI: 10.1038/ng.2745
Farinha, C. M. et al. Biochemical methods to assess CFTR expression and membrane localization. J. Cyst. Fibros. 10.1016/j.jcf.2004.05.017 (2004). DOI: 10.1016/j.jcf.2004.05.017
Amaral, M. D. & Balch, W. E. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J. Cyst. Fibros. 10.1016/j.jcf.2015.09.006 (2015). DOI: 10.1016/j.jcf.2015.09.006
Cheng, S. H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 10.1016/0092-8674(90)90148-8 (1990). DOI: 10.1016/0092-8674(90)90148-8
Wang, X. et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815 (2006). DOI: 10.1016/j.cell.2006.09.043
Pankow, S. et al. Δf508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 10.1038/nature15729 (2015). DOI: 10.1038/nature15729
Reilly, R. et al. Targeting the PI3K/Akt/mTOR signalling pathway in cystic fibrosis. Sci. Rep. 10.1038/s41598-017-06588-z (2017). DOI: 10.1038/s41598-017-06588-z
Pollard, H. B., Ji, X. D., Jozwik, C. & Jacobowitz, D. M. High abundance protein profiling of cystic fibrosis lung epithelial cells. Proteomics 10.1002/pmic.200401120 (2005). DOI: 10.1002/pmic.200401120
Slenter, D. N. et al. WikiPathways: A multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 10.1093/nar/gkx1064 (2018). DOI: 10.1093/nar/gkx1064
Gawron, P. et al. MINERVA—A platform for visualization and curation of molecular interaction networks. npj Syst. Biol. Appl. 10.1038/npjsba.2016.20 (2016). DOI: 10.1038/npjsba.2016.20
Sadlish, H. & Skach, W. R. Biogenesis of CFTR and other polytopic membrane proteins: New roles for the ribosome-translocon complex. J. Membr. Biol. 10.1007/s00232-004-0715-6 (2004). DOI: 10.1007/s00232-004-0715-6
Chen, M. & Zhang, J. T. Membrane insertion, processing, and topology of cystic fibrosis transmembrane conductance regulator (CFTR) in microsomal membranes. Mol. Membr. Biol. 10.3109/09687689609160572 (1996). DOI: 10.3109/09687689609160572
Kim, S. J. & Skach, W. R. Mechanisms of CFTR folding at the endoplasmic reticulum. Front. Pharmacol. 3, 1–11 (2012).
Younger, J. M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 10.1016/j.cell.2006.06.041 (2006). DOI: 10.1016/j.cell.2006.06.041
Coppinger, J. A. et al. A chaperone trap contributes to the onset of cystic fibrosis. PLoS ONE 10.1371/journal.pone.0037682 (2012). DOI: 10.1371/journal.pone.0037682
Wang, X. et al. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses di-acidic exit code. J. Cell Biol. 10.1083/jcb.200401035 (2004). DOI: 10.1083/jcb.200401035
Amaral, M. D., Farinha, C. M., Matos, P. & Botelho, H. M. Investigating alternative transport of integral plasma membrane proteins from the ER to the golgi: Lessons from the cystic fibrosis transmembrane conductance regulator (CFTR). Methods Mol. Biol. 10.1007/978-1-4939-3804-9_7 (2016). DOI: 10.1007/978-1-4939-3804-9_7
Guggino, W. B. The cystic fibrosis transmembrane regulator forms macromolecular complexes with PDZ domain scaffold proteins. Proc. Am. Thorac. Soc. 10.1513/pats.2306011 (2004). DOI: 10.1513/pats.2306011
Wang, S., Yue, H., Derin, R. B., Guggino, W. B. & Li, M. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 10.1016/S0092-8674(00)00096-9 (2000). DOI: 10.1016/S0092-8674(00)00096-9
Chappe, V. et al. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J. Physiol. 10.1113/jphysiol.2002.035790 (2003). DOI: 10.1113/jphysiol.2002.035790
Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P. & Nairn, A. C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 10.1016/s0021-9258(18)42339-3 (1992). DOI: 10.1016/s0021-9258(18)42339-3
Naren, A. P. et al. A macromolecular complex of β2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc. Natl. Acad. Sci. U.S.A. 10.1073/pnas.0135434100 (2003). DOI: 10.1073/pnas.0135434100
Watson, M. J. et al. Defective adenosine-stimulated cAMP production in cystic fibrosis airway epithelia: a novel role for CFTR in cell signaling. FASEB J. 10.1096/fj.11-186080 (2011). DOI: 10.1096/fj.11-186080
Namkung, W., Finkbeiner, W. E. & Verkman, A. S. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. Mol. Biol. Cell 10.1091/mbc.E09-12-1004 (2010). DOI: 10.1091/mbc.E09-12-1004
Thelin, W. R. et al. The cystic fibrosis transmembrane conductance regulator is regulated by a direct interaction with the protein phosphatase 2A. J. Biol. Chem. 10.1074/jbc.M507308200 (2005). DOI: 10.1074/jbc.M507308200
Zhang, W., Zhang, Z., Zhang, Y. & Naren, A. P. CFTR-NHERF2-LPA2 complex in the airway and gut epithelia. Int. J. Mol. Sci. 10.3390/ijms18091896 (2017). DOI: 10.3390/ijms18091896
Bertrand, C. A. et al. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9. Am. J. Physiol. Lung Cell. Mol. Physiol. 10.1152/ajplung.00178.2016 (2017). DOI: 10.1152/ajplung.00178.2016
Benedetto, R. et al. Epithelial chloride transport by CFTR requires TMEM16A. Sci. Rep. 10.1038/s41598-017-10910-0 (2017). DOI: 10.1038/s41598-017-10910-0
Mohler, P. J. et al. Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50. J. Cell Biol. 10.1083/jcb.147.4.879 (1999). DOI: 10.1083/jcb.147.4.879
Canato, S. et al. Proteomic interaction profiling reveals KIFC1 as a factor involved in early targeting of F508del-CFTR to degradation. Cell. Mol. Life Sci. 10.1007/s00018-018-2896-7 (2018). DOI: 10.1007/s00018-018-2896-7
Swiatecka-Urban, A. et al. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J. Biol. Chem. 282, 23725–23736 (2007). DOI: 10.1074/jbc.M608531200
McClure, M. L., Barnes, S., Brodsky, J. L. & Sorscher, E. J. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: A complex network of posttranslational modifications. Am. J. Physiol. Lung Cell. Mol. Physiol. 10.1152/ajplung.00431.2015 (2016). DOI: 10.1152/ajplung.00431.2015
Ahner, A., Gong, X. & Frizzell, R. A. Cystic fibrosis transmembrane conductance regulator degradation: Cross-talk between the ubiquitylation and SUMOylation pathways. FEBS J. 10.1111/febs.12415 (2013). DOI: 10.1111/febs.12415
Okiyoneda, T. et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 10.1126/science.1191542 (2010). DOI: 10.1126/science.1191542
Sharma, M. et al. Misfolding diverts CFTR from recycling to degradation: Quality control at early endosomes. J. Cell Biol. 164, 923–933 (2004). DOI: 10.1083/jcb.200312018
De Boeck, K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatrica Int. J. Paediatr. 10.1111/apa.15155 (2020). DOI: 10.1111/apa.15155
Estabrooks, S. & Brodsky, J. L. Regulation of CFTR biogenesis by the proteostatic network and pharmacological modulators. Int. J. Mol. Sci. 21, 452 (2020). DOI: 10.3390/ijms21020452
Perrem, L. & Ratjen, F. Anti-inflammatories and mucociliary clearance therapies in the age of CFTR modulators. Pediatr. Pulmonol. 54, S46–S55 (2019). DOI: 10.1002/ppul.24364
Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 10.1091/mbc.E14-04-0935 (2016). DOI: 10.1091/mbc.E14-04-0935
Meng, X., Clews, J., Kargas, V., Wang, X. & Ford, R. C. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell. Mol. Life Sci. 10.1007/s00018-016-2386-8 (2017). DOI: 10.1007/s00018-016-2386-8
Chang, X. B. et al. Removal of multiple arginine-framed trafficking signals overcomes misprocessing of ΔF508 CFTR present in most patients with cystic fibrosis. Mol. Cell 10.1016/S1097-2765(00)80196-3 (1999). DOI: 10.1016/S1097-2765(00)80196-3
Wendeler, M. W., Nufer, O. & Hauri, H.-P. Improved maturation of CFTR by an ER export signal. FASEB J. 10.1096/fj.07-8128com (2007). DOI: 10.1096/fj.07-8128com
Okiyoneda, T. et al. Chaperone-independent peripheral quality control of CFTR by RFFL E3 ligase. Dev. Cell 10.1016/j.devcel.2018.02.001 (2018). DOI: 10.1016/j.devcel.2018.02.001
Matos, A. M. et al. Inhibition of calpain 1 restores plasma membrane stability to pharmacologically rescued Phe508del-CFTR variant. J. Biol. Chem. 10.1074/jbc.RA119.008738 (2019). DOI: 10.1074/jbc.RA119.008738
Piao, H. et al. Sec16A is critical for both conventional and unconventional secretion of CFTR. Sci. Rep. 10.1038/srep39887 (2017). DOI: 10.1038/srep39887
Gee, H. Y., Noh, S. H., Tang, B. L., Kim, K. H. & Lee, M. G. Rescue of Δf508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 10.1016/j.cell.2011.07.021 (2011). DOI: 10.1016/j.cell.2011.07.021
Kondratova, M., Sompairac, N., Barillot, E., Zinovyev, A. & Kuperstein, I. Signalling maps in cancer research: Construction and data analysis. Database 10.1093/database/bay036 (2018). DOI: 10.1093/database/bay036
Siebenhaller, M. et al. Human-like layout algorithms for signalling hypergraphs: Outlining requirements. Brief. Bioinform. 21, 62–72 (2018).
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 10.1093/nar/gkw1092 (2017). DOI: 10.1093/nar/gkw1092
Tang, B. L., Gee, H. Y. & Lee, M. G. The cystic fibrosis transmembrane conductance regulator’s expanding SNARE interactome. Traffic 12, 364–371 (2011). DOI: 10.1111/j.1600-0854.2011.01161.x
Stelzer, G. et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 10.1002/cpbi.5 (2016). DOI: 10.1002/cpbi.5
Szklarczyk, D. et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 10.1093/nar/gky1131 (2019). DOI: 10.1093/nar/gky1131
Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 10.1093/nar/gky1079 (2019). DOI: 10.1093/nar/gky1079
Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 10.1093/nar/gky1049 (2019). DOI: 10.1093/nar/gky1049
Braschi, B. et al. Genenames.org: The HGNC and VGNC resources in 2019. Nucleic Acids Res. 10.1093/nar/gky930 (2019). DOI: 10.1093/nar/gky930
Hoksza, D., Gawron, P., Ostaszewski, M., Smula, E. & Schneider, R. MINERVA API and plugins: Opening molecular network analysis and visualization to the community. Bioinformatics 35, 4496–4498 (2019). DOI: 10.1093/bioinformatics/btz286