[en] COBREXA.jl is a Julia package for scalable, high-performance constraint-based reconstruction and analysis of very large-scale biological models. Its primary purpose is to facilitate the integration of modern high performance computing environments with the processing and analysis of large-scale metabolic models of challenging complexity. We report the architecture of the package, and demonstrate how the design promotes analysis scalability on several use-cases with multi-organism community models.https://doi.org/10.17881/ZKCR-BT30.Supplementary data are available at Bioinformatics online.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group) ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
KRATOCHVIL, Miroslav ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
HEIRENDT, Laurent ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Wilken, St Elmo
PUSA, Taneli ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Arreckx, Sylvain
NORONHA, Alberto ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
van Aalst, Marvin
SATAGOPAM, Venkata ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Ebenhöh, Oliver
SCHNEIDER, Reinhard ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
TREFOIS, Christophe ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
GU, Wei ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
COBREXA.jl: constraint-based reconstruction and exascale analysis
Apaolaza, I. et al. (2018) COBRA methods and metabolic drug targets in cancer. Mol. Cell Oncol., 5, e1389672.
Bezanson, J. et al. (2017) Julia: a fresh approach to numerical computing. SIAM Rev., 59, 65-98.
Björnsson, B. et al.; Swedish Digital Twin Consortium. (2019) Digital twins to personalize medicine. Genome Med., 12, 4-4.
Brunk, E. et al. (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol., 36, 272-281.
Cook, D.J. and Nielsen, J. (2017) Genome-scale metabolic models applied to human health and disease. Wires Syst. Biol. Med., 9, e1393.
Ebrahim, A. et al. (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol., 7, 74-76.
Fang, X. et al. (2020) Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat. Rev. Microbiol., 18, 731-743.
Gudmundsson, S. and Thiele, I. (2010) Computationally efficient flux variability analysis. BMC Bioinformatics, 11, 489.
Heirendt, L. et al. (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.Nat. Protoc., 14, 639-702.
Heirendt, L. et al. (2017) DistributedFBA.jl: high-level, high-performance flux balance analysis in Julia. Bioinformatics, 33, 1421-1423.
Keating, S.M. et al.; SBML Level 3 Community members. (2020) SBML level 3: an extensible format for the exchange and reuse of biological models. Mol. Syst. Biol., 16, e9110.
Machado, D. et al. (2018) Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res., 46, 7542-7553.
Orth, J.D. et al. (2010) What is flux balance analysis?. Nat. Biotechnol., 28, 245-248.
Thiele, I. et al. (2020) Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol Syst Biol, 16, e8982.