Article (Périodiques scientifiques)
Enhanced Thermal Process Engineering by the Extended Discrete Element Method (XDEM)
PETERS, Bernhard; BESSERON, Xavier; ESTUPINAN DONOSO, Alvaro Antonio et al.
2013In Universal Journal of Engineering Science, 1, p. 139-145
Peer reviewed
 

Documents


Texte intégral
Enhanced Thermal Process Engineering by the Extended Discrete Element Method (XDEM).pdf
Postprint Éditeur (3.24 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] A vast number of engineering applications <br />include a continuous and discrete phase simultaneously, <br />and therefore, cannot be solved accurately by continu- <br />ous or discrete approaches only. Problems that involve <br />both a continuous and a discrete phase are important <br />in applications as diverse as pharmaceutical industry <br />e.g. drug production, agriculture food and process- <br />ing industry, mining, construction and agricultural <br />machinery, metals manufacturing, energy production <br />and systems biology. A novel technique referred to as <br />Extended Discrete Element Method (XDEM) is devel- <br />oped, that o ers a signi cant advancement for coupled <br />discrete and continuous numerical simulation concepts. <br />The Extended Discrete Element Method extends the <br />dynamics of granular materials or particles as described <br />through the classical discrete element method (DEM) to <br />additional properties such as the thermodynamic state <br />or stress/strain for each particle coupled to a continuum <br />phase such as <br />uid <br />ow or solid structures. Contrary <br />to a continuum mechanics concept, XDEM aims at <br />resolving the particulate phase through the various <br />processes attached to particles. While DEM predicts <br />the spacial-temporal position and orientation for each <br />particle, XDEM additionally estimates properties such <br />as the internal temperature and/or species distribution. <br />These predictive capabilities are further extended by an <br />interaction to <br />uid <br />ow by heat, mass and momentum <br />transfer and impact of particles on structures.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Ingénierie chimique
Auteur, co-auteur :
PETERS, Bernhard ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
BESSERON, Xavier  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
ESTUPINAN DONOSO, Alvaro Antonio  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
HOFFMANN, Florian ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
MICHAEL, Mark ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
MAHMOUDI, Amir Houshang ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Enhanced Thermal Process Engineering by the Extended Discrete Element Method (XDEM)
Date de publication/diffusion :
2013
Titre du périodique :
Universal Journal of Engineering Science
ISSN :
2331-6624
Maison d'édition :
Horizon Reasearch Publishing Crporation
Volume/Tome :
1
Pagination :
139-145
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 20 novembre 2013

Statistiques


Nombre de vues
286 (dont 30 Unilu)
Nombre de téléchargements
294 (dont 22 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu