[en] Alterations in the gut microbiome and a "leaky" gut are associated with Parkinson's disease (PD), which implies the prospect of rebalancing via dietary intervention. Here, we investigate the impact of a diet rich in resistant starch on the gut microbiome through a multi-omics approach. We conducted a randomized, controlled trial with short-term and long-term phases involving 74 PD patients of three groups: conventional diet, supplementation with resistant starch, and high-fibre diet. Our findings reveal associations between dietary patterns and changes in the gut microbiome's taxonomic composition, functional potential, metabolic activity, and host inflammatory proteome response. Resistant starch supplementation led to an increase in Faecalibacterium species and short-chain fatty acids alongside a reduction in opportunistic pathogens. Long-term supplementation also increased blood APOA4 and HSPA5 and reduced symptoms of PD. Our study highlights the potential of dietary interventions to modulate the gut microbiome and improve the quality of life for PD patients.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Eco-Systems Biology (Wilmes Group) Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group) LIH - Luxembourg Institute of Health
Disciplines :
Neurology Microbiology
Author, co-author :
PETROV, Viacheslav ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Schade, Sebastian ; Paracelsus-Elena-Klinik, Kassel, Germany
FNR11823097 - MICROH-DTU - Microbiomes In One Health, 2017 (01/09/2018-28/02/2025) - Paul Wilmes FNR14429377 - ProtectMove II - Reduced Penetrance In Hereditary Movement Disorders: Elucidating Mechanisms Of Endogenous Disease Protection, 2020 (01/07/2020-30/06/2023) - Anne Grünewald FNR11264123 - NCER-PD - Ncer-pd, 2015 (01/06/2015-31/05/2023) - Rejko Krüger
Funders :
Fonds National de la Recherche Luxembourg Horizon 2020 Framework Programme Deutsche Forschungsgemeinschaft Université du Luxembourg European Research Council Michael J Fox Foundation for Parkinson's Research
Funding text :
This work is dedicated with deep gratitude to Dr. Sebastian Schade, whose relentless commitment, clinical expertise, and vision as a talented young clinical-scientist, Neurologist, and Movement Disorder Specialist were indispensable to its success. Sebastian's dedication to patient care and his unwavering passion for advancing our understanding of the etiology, progression, treament, and prevention of Parkinson's disease remain a cornerstone of this work, embodying the principle that science must serve humanity. Although he is no longer with us, his legacy endures through the insights and colleagues he inspired, the collaborative spirit that he embodied, and the patients he deeply cared for. This project has received funding from the Michael J. Fox Foundation (PARKdiet MJFF-019228), the Luxembourg National Research Fund (FNR, MICROH DTU PRIDE/11823097), the Institute for Advanced Studies of the University of Luxembourg (AUDACITY grant MCI-BIOME_2019), and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 863664) to P.W. Additional funding was provided by the Deutsche Forschungsgemeinschaft (DFG) Research Unit FOR2488 (INTER/DFG/19/14429377), and the FNR under the National Center of Excellence in Research on Parkinson's disease (NCER-PD, FNR11264123) to P.M. This work was also supported by a Fulbright Research Scholarship from the Commission for Educational Exchange between the United States, Belgium and Luxembourg and by the FNR under INTERMOBILITY/23/17856242 to P.W. We would like to thank Floriane Gavotto and Lucia Gallucci from the LCSB Metabolomics and Lipidomics Platform (RRID:SCR_024769) for their technical and analytical support.
Bloem, B.R., Okun, M.S., and Klein, C. (2021). Parkinson’s disease. The Lancet 397, 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X.
Braak, H., Rüb, U., Gai, W.P., and Del Tredici, K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. Vienna Austria 1996 110, 517–536. https://doi.org/10.1007/s00702-002-0808-2.
Warnecke, T., Schäfer, K.-H., Claus, I., Del Tredici, K., and Jost, W.H. (2022). Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management. NPJ Park. Dis. 8, 31. https://doi.org/10.1038/s41531-022-00295-x.
Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., Marras, C., San Luciano, M., and Tanner, C. (2024). The epidemiology of Parkinson’s disease. Lancet Lond. Engl. 403, 283–292. https://doi.org/10.1016/S0140-6736(23)01419-8.
Scheperjans, F., Aho, V., Pereira, P.A.B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. Off. J. Mov. Disord. Soc. 30, 350–358. https://doi.org/10.1002/mds.26069.
Petrov, V.A., Saltykova, I.V., Zhukova, I.A., Alifirova, V.M., Zhukova, N.G., Dorofeeva, Y.B., Tyakht, A.V., Kovarsky, B.A., Alekseev, D.G., Kostryukova, E.S., et al. (2017). Analysis of Gut Microbiota in Patients with Parkinson’s Disease. Bull. Exp. Biol. Med. 162, 734–737. https://doi.org/10.1007/s10517-017-3700-7.
Hill-Burns, E.M., Debelius, J.W., Morton, J.T., Wissemann, W.T., Lewis, M.R., Wallen, Z.D., Peddada, S.D., Factor, S.A., Molho, E., Zabetian, C.P., et al. (2017). Parkinson’s Disease and PD Medications Have Distinct Signatures of the Gut Microbiome. Mov. Disord. Off. J. Mov. Disord. Soc. 32, 739–749. https://doi.org/10.1002/mds.26942.
Heintz-Buschart, A., Pandey, U., Wicke, T., Sixel-Döring, F., Janzen, A., Sittig-Wiegand, E., Trenkwalder, C., Oertel, W.H., Mollenhauer, B., and Wilmes, P. (2018). The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. Off. J. Mov. Disord. Soc. 33, 88–98. https://doi.org/10.1002/mds.27105.
Keshavarzian, A., Green, S.J., Engen, P.A., Voigt, R.M., Naqib, A., Forsyth, C.B., Mutlu, E., and Shannon, K.M. (2015). Colonic bacterial composition in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 30, 1351–1360. https://doi.org/10.1002/mds.26307.
Aho, V.T.E., Pereira, P.A.B., Voutilainen, S., Paulin, L., Pekkonen, E., Auvinen, P., and Scheperjans, F. (2019). Gut microbiota in Parkinson’s disease: Temporal stability and relations to disease progression. EBioMedicine 44, 691–707. https://doi.org/10.1016/j.ebiom.2019.05.064.
Li, C., Cui, L., Yang, Y., Miao, J., Zhao, X., Zhang, J., Cui, G., and Zhang, Y. (2019). Gut Microbiota Differs Between Parkinson’s Disease Patients and Healthy Controls in Northeast China. Front. Mol. Neurosci. 12, 171. https://doi.org/10.3389/fnmol.2019.00171.
Romano, S., Savva, G.M., Bedarf, J.R., Charles, I.G., Hildebrand, F., and Narbad, A. (2021). Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. Npj Park. Dis. 7, 1–13. https://doi.org/10.1038/s41531-021-00156-z.
Nishiwaki, H., Ueyama, J., Ito, M., Hamaguchi, T., Takimoto, K., Maeda, T., Kashihara, K., Tsuboi, Y., Mori, H., Kurokawa, K., et al. (2024). Meta-analysis of shotgun sequencing of gut microbiota in Parkinson’s disease. Npj Park. Dis. 10, 1–11. https://doi.org/10.1038/s41531-024-00724-z.
Chen, S.-J., Chen, C.-C., Liao, H.-Y., Lin, Y.-T., Wu, Y.-W., Liou, J.-M., Wu, M.-S., Kuo, C.-H., and Lin, C.-H. (2022). Association of Fecal and Plasma Levels of Short-Chain Fatty Acids With Gut Microbiota and Clinical Severity in Patients With Parkinson Disease. Neurology 98, e848–e858. https://doi.org/10.1212/WNL.0000000000013225.
Unger, M.M., Spiegel, J., Dillmann, K.-U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., and Schäfer, K.-H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019.
Aho, V.T.E., Houser, M.C., Pereira, P.A.B., Chang, J., Rudi, K., Paulin, L., Hertzberg, V., Auvinen, P., Tansey, M.G., and Scheperjans, F. (2021). Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 16, 6. https://doi.org/10.1186/s13024-021-00427-6.
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 167, 1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018.
Kim, T.-K., Bae, E.-J., Jung, B.C., Choi, M., Shin, S.J., Park, S.J., Kim, J.T., Jung, M.K., Ulusoy, A., Song, M.-Y., et al. (2022). Inflammation promotes synucleinopathy propagation. Exp. Mol. Med. 54, 2148–2161. https://doi.org/10.1038/s12276-022-00895-w.
Ross, F.C., Patangia, D., Grimaud, G., Lavelle, A., Dempsey, E.M., Ross, R.P., and Stanton, C. (2024). The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol., 1–16. https://doi.org/10.1038/s41579-024-01068-4.
Kwon, D., Zhang, K., Paul, K.C., Folle, A.D., Del Rosario, I., Jacobs, J.P., Keener, A.M., Bronstein, J.M., and Ritz, B. (2024). Diet and the gut microbiome in patients with Parkinson’s disease. NPJ Park. Dis. 10, 89. https://doi.org/10.1038/s41531-024-00681-7.
Tresserra-Rimbau, A., Thompson, A.S., Bondonno, N., Jennings, A., Kühn, T., and Cassidy, A. (2023). Plant-Based Dietary Patterns and Parkinson’s Disease: A Prospective Analysis of the UK Biobank. Mov. Disord. Off. J. Mov. Disord. Soc. 38, 1994–2004. https://doi.org/10.1002/mds.29580.
Gao, X., Chen, H., Fung, T.T., Logroscino, G., Schwarzschild, M.A., Hu, F.B., and Ascherio, A. (2007). Prospective study of dietary pattern and risk of Parkinson disease. Am. J. Clin. Nutr. 86, 1486–1494. https://doi.org/10.1093/ajcn/86.5.1486.
Mischley, L.K., Lau, R.C., and Bennett, R.D. (2017). Role of Diet and Nutritional Supplements in Parkinson’s Disease Progression. Oxid. Med. Cell. Longev. 2017, 6405278. https://doi.org/10.1155/2017/6405278.
Becker, A., Schmartz, G.P., Gröger, L., Grammes, N., Galata, V., Philippeit, H., Weiland, J., Ludwig, N., Meese, E., Tierling, S., et al. (2022). Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson’s Disease - The RESISTA-PD Trial. Genomics Proteomics Bioinformatics 20, 274–287. https://doi.org/10.1016/j.gpb.2021.08.009.
Hall, D.A., Voigt, R.M., Cantu-Jungles, T.M., Hamaker, B., Engen, P.A., Shaikh, M., Raeisi, S., Green, S.J., Naqib, A., Forsyth, C.B., et al. (2023). An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants. Nat. Commun. 14, 926. https://doi.org/10.1038/s41467-023-36497-x.
Hegelmaier, T., Lebbing, M., Duscha, A., Tomaske, L., Tönges, L., Holm, J.B., Bjørn Nielsen, H., Gatermann, S.G., Przuntek, H., and Haghikia, A. (2020). Interventional Influence of the Intestinal Microbiome Through Dietary Intervention and Bowel Cleansing Might Improve Motor Symptoms in Parkinson’s Disease. Cells 9, 376. https://doi.org/10.3390/cells9020376.
Rusch, C., Beke, M., Tucciarone, L., Nieves, C., Ukhanova, M., Tagliamonte, M.S., Mai, V., Suh, J.H., Wang, Y., Chiu, S., et al. (2021). Mediterranean Diet Adherence in People With Parkinson’s Disease Reduces Constipation Symptoms and Changes Fecal Microbiota After a 5-Week Single-Arm Pilot Study. Front. Neurol. 12, 794640. https://doi.org/10.3389/fneur.2021.794640.
Bedarf, J.R., Romano, S., Heinzmann, S.S., Duncan, A., Traka, M.H., Ng, D., Segovia-Lizano, D., Simon, M.-C., Narbad, A., Wüllner, U., et al. (2025). A prebiotic dietary pilot intervention restores faecal metabolites and may be neuroprotective in Parkinson’s Disease. NPJ Park. Dis. 11, 66. https://doi.org/10.1038/s41531-025-00885-5.
Chaudhuri, K.R., Martinez-Martin, P., Schapira, A.H.V., Stocchi, F., Sethi, K., Odin, P., Brown, R.G., Koller, W., Barone, P., MacPhee, G., et al. (2006). International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov. Disord. Off. J. Mov. Disord. Soc. 21, 916–923. https://doi.org/10.1002/mds.20844.
Chaudhuri, K.R., Martinez-Martin, P., Brown, R.G., Sethi, K., Stocchi, F., Odin, P., Ondo, W., Abe, K., Macphee, G., Macmahon, D., et al. (2007). The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: Results from an international pilot study. Mov. Disord. Off. J. Mov. Disord. Soc. 22, 1901–1911. https://doi.org/10.1002/mds.21596.
Jenkinson, C., Fitzpatrick, R., Peto, V., Greenhall, R., and Hyman, N. (1997). The Parkinson’s Disease Questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing 26, 353–357. https://doi.org/10.1093/ageing/26.5.353.
Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R., et al. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 23, 2129–2170. https://doi.org/10.1002/mds.22340.
Schade, S., Mollenhauer, B., and Trenkwalder, C. (2020). Levodopa Equivalent Dose Conversion Factors: An Updated Proposal Including Opicapone and Safinamide. Mov. Disord. Clin. Pract. 7, 343–345. https://doi.org/10.1002/mdc3.12921.
Narayanasamy, S., Jarosz, Y., Muller, E.E.L., Heintz-Buschart, A., Herold, M., Kaysen, A., Laczny, C.C., Pinel, N., May, P., and Wilmes, P. (2016). IMP: a pipeline forreproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 17, 260. https://doi.org/10.1186/s13059-016-1116-8.
Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinforma. Oxf. Engl. 31, 1674–1676. https://doi.org/10.1093/bioinformatics/btv033.
Schwengers, O., Jelonek, L., Dieckmann, M.A., Beyvers, S., Blom, J., and Goesmann, A. (2021). Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genomics 7, 000685. https://doi.org/10.1099/mgen.0.000685.
Queirós, P., Delogu, F., Hickl, O., May, P., and Wilmes, P. (2021). Mantis: flexible and consensus-driven genome annotation. GigaScience 10, giab042. https://doi.org/10.1093/gigascience/giab042.
Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27.
Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233-238. https://doi.org/10.1093/nar/gkn663.
Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinforma. Oxf. Engl. 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656.
Wood, D.E., Lu, J., and Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0.
Parks, D.H., Chuvochina, M., Rinke, C., Mussig, A.J., Chaumeil, P.-A., and Hugenholtz, P. (2022). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalizedand complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794. https://doi.org/10.1093/nar/gkab776.
Ruscheweyh, H.-J., Milanese, A., Paoli, L., Karcher, N., Clayssen, Q., Keller, M.I., Wirbel, J., Bork, P., Mende, D.R., Zeller, G., et al. (2022). Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome 10, 212. https://doi.org/10.1186/s40168-022-01410-z.
De Saedeleer, B., Malabirade, A., Ramiro-Garcia, J., Habier, J., Trezzi, J.-P., Peters, S.L., Daujeumont, A., Halder, R., Jäger, C., Busi, S.B., et al. (2021). Systematic characterization of human gut microbiome-secreted molecules by integrated multi-omics. ISME Commun. 1, 1–6. https://doi.org/10.1038/s43705-021-00078-0.
Hiller, K., Hangebrauk, J., Jäger, C., Spura, J., Schreiber, K., and Schomburg, D. (2009). MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439. https://doi.org/10.1021/ac802689c.
Hällqvist, J., Bartl, M., Dakna, M., Schade, S., Garagnani, P., Bacalini, M.-G., Pirazzini, C., Bhatia, K., Schreglmann, S., Xylaki, M., et al. (2024). Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat. Commun. 15, 4759. https://doi.org/10.1038/s41467-024-48961-3.
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., et al. (2025). vegan: Community Ecology Package. Version 2.6-10.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8.
Nishijima, S., Stankevic, E., Aasmets, O., Schmidt, T.S.B., Nagata, N., Keller, M.I., Ferretti, P., Juel, H.B., Fullam, A., Robbani, S.M., et al. (2025). Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations. Cell 188, 222-236.e15. https://doi.org/10.1016/j.cell.2024.10.022.
Højsgaard, S., Halekoh, U., and Yan, J. (2006). The R Package geepack for Generalized Estimating Equations. J. Stat. Softw. 15, 1–11. https://doi.org/10.18637/jss.v015.i02.
Boogaart, K.G. van den, Tolosana-Delgado, R., and Bren, M. (2024). compositions: Compositional Data Analysis. Version 2.0-8.
Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., Bolker, B., Ellison, S., Firth, D., Friendly, M., et al. (2024). car: Companion to Applied Regression. Version 3.1-3.
Lenth, R.V., Banfai, B., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Piaskowski, J., et al. (2025). emmeans: Estimated Marginal Means, aka Least-Squares Means. Version 1.11.1.
Yu, G., and Chen, M. MicrobiomeProfiler: An R/shiny package for microbiome functional enrichment analysis. R package version 1.14.0. https://doi.org/10.18129/B9.bioc.MicrobiomeProfiler.
Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., Brand, T. van den, et al. (2025). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Version 3.5.2.
Slowikowski, K., Schep, A., Hughes, S., Dang, T.K., Lukauskas, S., Irisson, J.-O., Kamvar, Z.N., Ryan, T., Christophe, D., Hiroaki, Y., et al. (2024). ggrepel: Automatically Position Non-Overlapping Text Labels with “ggplot2.” Version 0.9.6.
Kassambara, A. (2023). ggpubr: “ggplot2” Based Publication Ready Plots. Version 0.6.0.
Gu, Z. (2022). Complex heatmap visualization. iMeta 1, e43. https://doi.org/10.1002/imt2.43.
Pedersen, T.L. (2024). patchwork: The Composer of Plots. Version 1.3.0.
Wallen, Z.D., Demirkan, A., Twa, G., Cohen, G., Dean, M.N., Standaert, D.G., Sampson, T.R., and Payami, H. (2022). Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 13, 6958. https://doi.org/10.1038/s41467-022-34667-x.
Baldini, F., Hertel, J., Sandt, E., Thinnes, C.C., Neuberger-Castillo, L., Pavelka, L., Betsou, F., Krüger, R., Thiele, I., and NCER-PD Consortium (2020). Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol. 18, 62. https://doi.org/10.1186/s12915-020-00775-7.
Antonelli, T., Carlà, V., Lambertini, L., Moroni, F., and Bianchi, C. (1984). Pyroglutamic acid administration modifies the electrocorticogram and increases the release of acetylcholine and GABA from the guinea-pig cerebral cortex. Pharmacol. Res. Commun. 16, 189–197. https://doi.org/10.1016/s0031-6989(84)80094-6.
Aiello, A., Pepe, E., De Luca, L., Pizzolongo, F., and Romano, R. (2022). Preliminary study on kinetics of pyroglutamic acid formation in fermented milk. Int. Dairy J. 126, 105233. https://doi.org/10.1016/j.idairyj.2021.105233.
dasdasdasdasdas
Vascellari, S., Palmas, V., Melis, M., Pisanu, S., Cusano, R., Uva, P., Perra, D., Madau, V., Sarchioto, M., Oppo, V., et al. (2020). Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. mSystems 5, e00561-20. https://doi.org/10.1128/mSystems.00561-20.
Henrich, M.T., Oertel, W.H., Surmeier, D.J., and Geibl, F.F. (2023). Mitochondrial dysfunction in Parkinson’s disease - a key disease hallmark with therapeutic potential. Mol. Neurodegener. 18, 83. https://doi.org/10.1186/s13024-023-00676-7.
Engelke, U.F.H., Zijlstra, F.S.M., Mochel, F., Valayannopoulos, V., Rabier, D., Kluijtmans, L.A.J., Perl, A., Verhoeven-Duif, N.M., de Lonlay, P., Wamelink, M.M.C., et al. (2010). Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency. Biochim. Biophys. Acta 1802, 1028–1035. https://doi.org/10.1016/j.bbadis.2010.06.007.
Pilarczyk-Zurek, M., Sitkiewicz, I., and Koziel, J. (2022). The Clinical View on Streptococcus anginosus Group – Opportunistic Pathogens Coming Out of Hiding. Front. Microbiol. 13, 956677. https://doi.org/10.3389/fmicb.2022.956677.
Magdy Wasfy, R., Mbaye, B., Borentain, P., Tidjani Alou, M., Murillo Ruiz, M.L., Caputo, A., Andrieu, C., Armstrong, N., Million, M., and Gerolami, R. (2023). Ethanol-Producing Enterocloster bolteae Is Enriched in Chronic Hepatitis B-Associated Gut Dysbiosis: A Case-Control Culturomics Study. Microorganisms 11, 2437. https://doi.org/10.3390/microorganisms11102437.
Brisson-Noël, A., Delrieu, P., Samain, D., and Courvalin, P. (1988). Inactivation of lincosaminide antibiotics in Staphylococcus. Identification of lincosaminide O-nucleotidyltransferases and comparison of the corresponding resistance genes. J. Biol. Chem. 263, 15880–15887.
Schönfeld, P., and Wojtczak, L. (2016). Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954. https://doi.org/10.1194/jlr.R067629.
Deleu, S., Arnauts, K., Deprez, L., Machiels, K., Ferrante, M., Huys, G.R.B., Thevelein, J.M., Raes, J., and Vermeire, S. (2023). High Acetate Concentration Protects Intestinal Barrier and Exerts Anti-Inflammatory Effects in Organoid-Derived Epithelial Monolayer Cultures from Patients with Ulcerative Colitis. Int. J. Mol. Sci. 24, 768. https://doi.org/10.3390/ijms24010768.
Chen, J.S., Faller, D.V., and Spanjaard, R.A. (2003). Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Curr. Cancer Drug Targets 3, 219–236. https://doi.org/10.2174/1568009033481994.
Dalile, B., Van Oudenhove, L., Vervliet, B., and Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478. https://doi.org/10.1038/s41575-019-0157-3.
Baert, F., Matthys, C., Maselyne, J., Van Poucke, C., Van Coillie, E., Bergmans, B., and Vlaemynck, G. (2021). Parkinson’s disease patients’ short chain fatty acids production capacity after in vitro fecal fiber fermentation. NPJ Park. Dis. 7, 72. https://doi.org/10.1038/s41531-021-00215-5.
Verstraeten, S., Layec, S., Auger, S., Juste, C., Henry, C., Charif, S., Jaszczyszyn, Y., Sokol, H., Beney, L., Langella, P., et al. (2024). Faecalibacterium duncaniae A2-165 regulates the expression of butyrate synthesis, ferrous iron uptake, and stress-response genes based on acetate consumption. Sci. Rep. 14, 987. https://doi.org/10.1038/s41598-023-51059-3.
Zhou, Y., Xu, H., Xu, J., Guo, X., Zhao, H., Chen, Y., Zhou, Y., and Nie, Y. (2021). F. prausnitzii and its supernatant increase SCFAs-producing bacteria to restore gut dysbiosis in TNBS-induced colitis. AMB Express 11, 33. https://doi.org/10.1186/s13568-021-01197-6.
Keegstra, J.M., Carrara, F., and Stocker, R. (2022). The ecological roles of bacterial chemotaxis. Nat. Rev. Microbiol. 20, 491–504. https://doi.org/10.1038/s41579-022-00709-w.
Boktor, J.C., Sharon, G., Verhagen Metman, L.A., Hall, D.A., Engen, P.A., Zreloff, Z., Hakim, D.J., Bostick, J.W., Ousey, J., Lange, D., et al. (2023). Integrated Multi-Cohort Analysis of the Parkinson’s Disease Gut Metagenome. Mov. Disord. Off. J. Mov. Disord. Soc. 38, 399–409. https://doi.org/10.1002/mds.29300.
Guttenplan, S.B., and Kearns, D.B. (2013). Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37, 849–871. https://doi.org/10.1111/1574-6976.12018.
Salemi, R.I., Cruz, A.K., and Hershey, D.M. (2024). A flagellar accessory protein links chemotaxis to surface sensing. J. Bacteriol. 206, e0040424. https://doi.org/10.1128/jb.00404-24.
Giltner, C.L., Nguyen, Y., and Burrows, L.L. (2012). Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. MMBR 76, 740–772. https://doi.org/10.1128/MMBR.00035-12.
Persat, A., Inclan, Y.F., Engel, J.N., Stone, H.A., and Gitai, Z. (2015). Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U. S. A. 112, 7563–7568. https://doi.org/10.1073/pnas.1502025112.
Flemming, H.-C., and Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260. https://doi.org/10.1038/s41579-019-0158-9.
Nie, S., Wang, J., Deng, Y., Ye, Z., and Ge, Y. (2022). Inflammatory microbes and genes as potential biomarkers of Parkinson’s disease. NPJ Biofilms Microbiomes 8, 101. https://doi.org/10.1038/s41522-022-00367-z.
Dunleavy, K.A., Rypstra, C.R., Busciglio, I., Eckert, D., Ryks, M., Omerdic, E., Chedid, V.G., Raffals, L.E., and Camilleri, M. (2025). Intestinal Permeability In Vivo in Patients With Inflammatory Bowel Disease: Comparison of Active Disease and Remission. Inflamm. Bowel Dis., izaf043. https://doi.org/10.1093/ibd/izaf043.
Baldassano, S.N., and Bassett, D.S. (2016). Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease. Sci. Rep. 6, 26087. https://doi.org/10.1038/srep26087.
Colla, E., Coune, P., Liu, Y., Pletnikova, O., Troncoso, J.C., Iwatsubo, T., Schneider, B.L., and Lee, M.K. (2012). Endoplasmic Reticulum Stress Is Important for the Manifestations of α-Synucleinopathy In Vivo. J. Neurosci. 32, 3306–3320. https://doi.org/10.1523/JNEUROSCI.5367-11.2012.
Mou, Z., Yuan, Y., Zhang, Z., Song, L., and Chen, N.-H. (2020). Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicol. Lett. 324, 20–29. https://doi.org/10.1016/j.toxlet.2020.01.019.
Jiang, M., Yun, Q., Shi, F., Niu, G., Gao, Y., Xie, S., and Yu, S. (2016). Downregulation of miR-384-5p attenuates rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through inhibiting endoplasmic reticulum stress. Am. J. Physiol. Cell Physiol. 310, C755-763. https://doi.org/10.1152/ajpcell.00226.2015.
Pazi, M.B., Belan, D.V., Komarova, E.Y., and Ekimova, I.V. (2024). Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson’s Disease. Int. J. Mol. Sci. 25, 3951. https://doi.org/10.3390/ijms25073951.
Gorbatyuk, M.S., Shabashvili, A., Chen, W., Meyers, C., Sullivan, L.F., Salganik, M., Lin, J.H., Lewin, A.S., Muzyczka, N., and Gorbatyuk, O.S. (2012). Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol. Ther. J. Am. Soc. Gene Ther. 20, 1327–1337. https://doi.org/10.1038/mt.2012.28.
Qu, Y., Li, J., Qin, Q., Wang, D., Zhao, J., An, K., Mao, Z., Min, Z., Xiong, Y., Li, J., et al. (2023). A systematic review and meta-analysis of inflammatory biomarkers in Parkinson’s disease. Npj Park. Dis. 9, 18. https://doi.org/10.1038/s41531-023-00449-5.
Salganik, M., Sergeyev, V.G., Shinde, V., Meyers, C.A., Gorbatyuk, M.S., Lin, J.H., Zolotukhin, S., and Gorbatyuk, O.S. (2015). The Loss of Glucose Regulated Protein 78 (GRP78) during Normal Aging or from siRNA Knockdown Augments Human Alpha-Synuclein (α-syn) Toxicity to Rat Nigral Neurons. Neurobiol. Aging 36, 2213–2223. https://doi.org/10.1016/j.neurobiolaging.2015.02.018.
Enogieru, A.B., Omoruyi, S.I., Hiss, D.C., and Ekpo, O.E. (2019). GRP78/BIP/HSPA5 as a Therapeutic Target in Models of Parkinson’s Disease: A Mini Review. Adv. Pharmacol. Sci. 2019, 2706783. https://doi.org/10.1155/2019/2706783.
Recalde, D., Ostos, M.A., Badell, E., Garcia-Otin, A.-L., Pidoux, J., Castro, G., Zakin, M.M., and Scott-Algara, D. (2004). Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide. Arterioscler. Thromb. Vasc. Biol. 24, 756–761. https://doi.org/10.1161/01.ATV.0000119353.03690.22.
Li, X., Liu, X., Zhang, Y., Cheng, C., Fan, J., Zhou, J., Garstka, M.A., and Li, Z. (2021). Hepatoprotective effect of apolipoprotein A4 against carbon tetrachloride induced acute liver injury through mediating hepatic antioxidant and inflammation response in mice. Biochem. Biophys. Res. Commun. 534, 659–665. https://doi.org/10.1016/j.bbrc.2020.11.024.
Liu, X.-H., Zhou, J.-T., Yan, C., Cheng, C., Fan, J.-N., Xu, J., Zheng, Q., Bai, Q., Li, Z., Li, S., et al. (2022). Single-cell RNA sequencing reveals a novel inhibitory effect of ApoA4 on NAFL mediated by liver-specific subsets of myeloid cells. Front. Immunol. 13, 1038401. https://doi.org/10.3389/fimmu.2022.1038401.
Zhang, Y., He, J., Zhao, J., Xu, M., Lou, D., Tso, P., Li, Z., and Li, X. (2017). Effect of ApoA4 on SERPINA3 mediated by nuclear receptors NR4A1 and NR1D1 in hepatocytes. Biochem. Biophys. Res. Commun. 487, 327–332. https://doi.org/10.1016/j.bbrc.2017.04.058.
Lin, Q., Cao, Y., and Gao, J. (2015). Decreased expression of the APOA1–APOC3–APOA4 gene cluster is associated with risk of Alzheimer’s disease. Drug Des. Devel. Ther. 9, 5421–5431. https://doi.org/10.2147/DDDT.S89279.
Cui, Y., Huang, M., He, Y., Zhang, S., and Luo, Y. (2011). Genetic ablation of apolipoprotein A-IV accelerates Alzheimer’s disease pathogenesis in a mouse model. Am. J. Pathol. 178, 1298–1308. https://doi.org/10.1016/j.ajpath.2010.11.057.
Kim, Y., Kim, J., Son, M., Lee, J., Yeo, I., Choi, K.Y., Kim, H., Kim, B.C., Lee, K.H., and Kim, Y. (2022). Plasma protein biomarker model for screening Alzheimer disease using multiple reaction monitoring-mass spectrometry. Sci. Rep. 12, 1282. https://doi.org/10.1038/s41598-022-05384-8.
Tansey, M.G., Wallings, R.L., Houser, M.C., Herrick, M.K., Keating, C.E., and Joers, V. (2022). Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657–673. https://doi.org/10.1038/s41577-022-00684-6.
Yacoubian, T.A., Fang, Y.-H.D., Gerstenecker, A., Amara, A., Stover, N., Ruffrage, L., Collette, C., Kennedy, R., Zhang, Y., Hong, H., et al. (2023). Brain and Systemic Inflammation in De Novo Parkinson’s Disease. Mov. Disord. 38, 743–754. https://doi.org/10.1002/mds.29363.
Krishnan, R., Tsubery, H., Proschitsky, M.Y., Asp, E., Lulu, M., Gilead, S., Gartner, M., Waltho, J.P., Davis, P.J., Hounslow, A.M., et al. (2014). A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J. Mol. Biol. 426, 2500–2519. https://doi.org/10.1016/j.jmb.2014.04.015.
Dimant, H., Sharon, N., and Solomon, B. (2009). Modulation effect of filamentous phage on alpha-synuclein aggregation. Biochem. Biophys. Res. Commun. 383, 491–496. https://doi.org/10.1016/j.bbrc.2009.04.048.
Dimant, H., and Solomon, B. (2010). Filamentous phages reduce alpha-synuclein oligomerization in the membrane fraction of SH-SY5Y cells. Neurodegener. Dis. 7, 203–205. https://doi.org/10.1159/000295664.
Arcos, M., Olivera, E.R., Arias, S., Naharro, G., and Luengo, J.M. (2010). The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U. Environ. Microbiol. 12, 1684–1704. https://doi.org/10.1111/j.1462-2920.2010.02233.x.
Sandler, M., Karoum, F., Ruthven, C.R., and Calne, D.B. (1969). m-Hydroxyphenylacetic acid formation from L-dopa in man: suppression by neomycin. Science 166, 1417–1418. https://doi.org/10.1126/science.166.3911.1417.
Liu, Z., Xi, R., Zhang, Z., Li, W., Liu, Y., Jin, F., and Wang, X. (2014). 4-hydroxyphenylacetic acid attenuated inflammation and edema via suppressing HIF-1α in seawater aspiration-induced lung injury in rats. Int. J. Mol. Sci. 15, 12861–12884. https://doi.org/10.3390/ijms150712861.
Zhao, H., Jiang, Z., Chang, X., Xue, H., Yahefu, W., and Zhang, X. (2018). 4-Hydroxyphenylacetic Acid Prevents Acute APAP-Induced Liver Injury by Increasing Phase II and Antioxidant Enzymes in Mice. Front. Pharmacol. 9, 653. https://doi.org/10.3389/fphar.2018.00653.
An, S., Yao, Y., Wu, J., Hu, H., Wu, J., Sun, M., Li, J., Zhang, Y., Li, L., Qiu, W., et al. (2024). Gut-derived 4-hydroxyphenylacetic acid attenuates sepsis-induced acute kidney injury by upregulating ARC to inhibit necroptosis. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 166876. https://doi.org/10.1016/j.bbadis.2023.166876.
Xiang, Y., Zhang, C., Wang, J., Cheng, Y., Wang, K., Wang, L., Tong, Y., and Yan, D. (2024). Role of blood metabolites in mediating the effect of gut microbiome on the mutated-RAS/BRAF metastatic colorectal cancer-specific survival. Int. J. Colorectal Dis. 39, 116. https://doi.org/10.1007/s00384-024-04686-9.