[en] Allergen-specific immunotherapy (AIT) induces immune tolerance, showing the highest success rate (>95%) for insect venom while a much lower chance for pollen allergy. However, the molecular switches leading to successful durable tolerance restoration remain elusive. The primary outcome of this observational study is the comprehensive immunological cellular characterization during the AIT initiation phase, whereas the secondary outcomes are the serological and Th2-cell-type-specific transcriptomic analyses. Here we apply a multilayer-omics approach to reveal dynamic peripheral immune landscapes during the AIT-initiation phase in venom allergy patients (VAP) versus pollen-allergic and healthy controls. Already at baseline, VAP exhibit altered abundances of several cell types, including classical monocytes (cMono), CD4+ hybrid type 1-type 17 cells (Th1-Th17 or Th1/17) and CD8+ counterparts (Tc1-Tc17 or Tc1/17). At 8-24 h following AIT launch in VAP, we identify a uniform AIT-elicited pulse of late-transitional/IL-10-producing B cells, IL-6 signaling within Th2 cells and non-inflammatory serum-IL-6 levels. Sequential induction of activation and survival protein markers also immediately occur. A disequilibrium between serum IL-6 and cMono in VAP baseline is restored at day seven following AIT launch. Our longitudinal analysis discovers molecular switches during initiation-phase insect-venom AIT that secure long-term outcomes. Trial number: NCT02931955.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Pogorelov, Dimitrii; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg ; Center of Allergy & Environment, Technical University of Munich, Munich, Germany
Bode, Sebastian Felix Nepomuk ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany ; Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
Ramiro-Garcia, Javier ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
Hedin, Fanny; National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Ammerlaan, Wim; Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
Konstantinou, Maria; National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Capelle, Christophe M ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg ; Institute of Microbiology, ETH Zurich, Zurich, Switzerland
Zeng, Ni ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
POLI, Aurelie ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Domingues, Olivia; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Montamat, Guillem ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Hunewald, Oliver ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Ciré, Séverine ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
BARON, Alexandre ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Translational Neuroscience > Team Rejko KRÜGER ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
LONGWORTH, Joseph ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Demczuk, Agnieszka ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Bazon, Murilo Luiz; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Casper, Ingrid; Center for Rhinology and Allergology, Wiesbaden, Germany
Klimek, Ludger; Center for Rhinology and Allergology, Wiesbaden, Germany
Neuberger-Castillo, Lorie; Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
Revets, Dominique; National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Guyonnet, Lea; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Cytometry Platform, Institut Curie, Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
Delhalle, Sylvie ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
ZIMMER, Jacques ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
Benes, Vladimir ; Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
Codreanu-Morel, Françoise; National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
Lehners-Weber, Christiane; National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
Weets, Ilse; Department of Clinical Biology/ Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
ALPER, Pinar ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Bioinformatics Core > R3 and IT infrastructure
BRENNER, Dirk ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
Gutermuth, Jan; Department of Dermatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
Guerin, Coralie ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg ; Cytometry Platform, Institut Curie, Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
Morisset, Martine ; National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg ; Allergy Unit, Angers University Hospital, Angers, France
Hentges, François; National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
SCHNEIDER, Reinhard ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Shamji, Mohamed H; Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, UK
BETSOU, Fay ; University of Luxembourg ; Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg ; CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
COSMA, Antonio ; University of Luxembourg > Faculty of Law, Economics and Finance > Department of Economics and Management > Team Antonio COSMA ; National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
GONCALVES, Jorge ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > AI Modelling and Prediction
Hefeng, Feng Q ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg. Feng.Hefeng@lih.lu
OLLERT, Markus ; University of Luxembourg ; Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg. Markus.Ollert@lih.lu ; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark. Markus.Ollert@lih.lu
H2020 - 863664 - ExpoBiome - Deciphering the impact of exposures from the gut microbiome-derived molecular complex in human health and disease HE - 101136957 - COMMUTE - COMORBIDITY MECHANISMS UTILIZED IN HEALTHCARE
FnR Project :
FNR11012546 - NEXTIMMUNE - Next Generation Immunoscience: Advanced Concepts For Deciphering Acute And Chronic Inflammation, 2015 (01/01/2017-30/06/2023) - Markus Ollert FNR10907093 - CriTICS - Critical Transitions In Complex Systems: From Theory To Applications, 2015 (01/11/2016-31/08/2023) - Jorge Gonçalves FNR14254520 - i2TRON - Integrating Immune Strategies For Translational Research In Oncology And Neurology, 2020 (01/02/2021-31/07/2027) - Rejko Krueger FNR18115323 - CRIS-CD8TERA - Crispr Screening In Primary Human Cd8 T Cells Identifies Regulators Modulating Cd8 Temra Differentiation, 2023 (01/05/2024-31/12/2026) - Feng He FNR10404093 - microCancer - Non-invasive Microbiome-derived Multi-omic Biomarkers For Early-stage Colorectal Cancer Detection, 2015 (01/01/2016-30/04/2019) - Paul Wilmes FNR12691266 - cROSsfire 2.0 - Elucidating The Function Of Antioxidants And Ros On Metabolism And Inflammation In Macrophages And B Cells, 2018 (01/01/2020-31/12/2022) - Dirk Brenner FNR15796788 - Th17-ImmunoMet - Characterization Of Key Metabolic Circuits In Th17 Cells And Their Influence On Th17 Cell Mediated Pathogenic And Protective Functions., 2021 (01/01/2022-31/12/2024) - Dirk Brenner FNR16954531 - CoVaLux - Covid-19, Vaccination And Longer-term Health Consequences Of Covid-19 In Luxembourg, 2021 (01/12/2021-30/11/2024) - Paul Wilmes
Funders :
European Union
Funding text :
We acknowledge all the anonymous participants in the SYS-T-ACT cohort. We appreciate all the support of research nurses especially the coordinator Jean-Yves Ferrand at CIEC of LIH and clinical nurses at Central Hospital of Luxembourg. We also thank the processing and biorepository teams at the IBBL. We acknowledge the LIH IT service unit to support and secure our resource sharing. This work was initially supported by Luxembourg Personalized Medicine Consortium (PMC, 2015 to M.O. and F.Q.H.), followed by Luxembourg National Research Fund (FNR) PRIDE programs (11012546/NEXTIMMUNE for D.P. and G.M. coordinated by M.O., 10907093/CriTiCS for C.M.C. supervised by F.Q.H. and coordinated by J. Goncalves and 14254520/i2TRON for A.D. co-coordinated by M.O.) and individual FNR AFR program (PHD-2015-1/9989160 for N.Z. coordinated by F.Q.H.) and EAACI long-term fellowship (2016, S.F.N.B.; 2022, M.L.B). F.Q.H is supported by the FNR CORE program (C23/BM/18115323) and HPC Bridges program (18886016). F.Q.H and M.O. acknowledge funding from the Horizon Europe project COMMUTE under the grant agreement No. 101136957. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them. P.W. has received funding from the European Research Council (ERC) under the European Union\u2019s Horizon 2020 research and innovation program (grant agreement No. 863664) and the FNR CORE program under the grant CORE/15/BM/10404093. D.B. is supported by the FNR CORE program (C18/BM/12691266 and C21/BM/15796788). The work was further supported by the Luxembourg Government through the CoVaLux programme (16954531, M.O. and P.W.). A.P. is supported by the Action Lions Vaincre le Cancer. Some icons in our Figures were created with BioRender.com.
Calderon, M. A. et al. Allergen injection immunotherapy for seasonal allergic rhinitis. Cochrane Database Syst Rev, CD001936 https://doi.org/10.1002/14651858.CD001936.pub2 (2007).
G.J. Sturm et al. EAACI guidelines on allergen immunotherapy: Hymenoptera venom allergy Allergy 2018 73 744 764 1:STN:280:DC%2BC1cfhs1emtg%3D%3D 28748641
A.I. Tabar et al. Three years of specific immunotherapy may be sufficient in house dust mite respiratory allergy J. Allergy Clin. Immunol. 2011 127 57 63.e3 21211641
M.H. Shamji et al. Diverse immune mechanisms of allergen immunotherapy for allergic rhinitis with and without asthma J. Allergy Clin. Immunol. 2022 149 791 801 1:CAS:528:DC%2BB38Xht1elu7vF 35093483
A. Michils et al. Early effect of ultrarush venom immunotherapy on the IgG antibody response Allergy 2000 55 455 462 1:CAS:528:DC%2BD3cXjtF2ls7Y%3D 10843426
S.J. Galli M. Tsai A.M. Piliponsky The development of allergic inflammation Nature 2008 454 445 454 2008Natur.454.445G 1:CAS:528:DC%2BD1cXovV2mtbs%3D 18650915 3573758
M. Akdis C.A. Akdis Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens J. Allergy Clin. Immunol. 2014 133 621 631 1:CAS:528:DC%2BC2cXjs1Ois7o%3D 24581429
L. Maintz C. Bussmann T. Bieber N. Novak Contribution of histamine metabolism to tachyphylaxis during the buildup phase of rush immunotherapy J. Allergy Clin. Immunol. 2009 123 701 703 19121858
C.D. Rudulier E. Tonti E. James W.W. Kwok M. Larche Modulation of CRTh2 expression on allergen-specific T cells following peptide immunotherapy Allergy 2019 74 2157 2166 1:CAS:528:DC%2BC1MXitVersr%2FI 31077596
Wambre, E. et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 9, eaam9171 (2017).
K. Golebski et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response Immunity 2021 54 291 307.e297 1:CAS:528:DC%2BB3MXhtlWnsb4%3D 33450188
R.C. Aalberse S.O. Stapel J. Schuurman T. Rispens Immunoglobulin G4: an odd antibody Clin. Exp. Allergy 2009 39 469 477 1:CAS:528:DC%2BD1MXksVKjs7k%3D 19222496
W. van de Veen et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses J. Allergy Clin. Immunol. 2013 131 1204 1212 23453135
H. Morita et al. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers Immunity 2015 43 175 186 1:CAS:528:DC%2BC2MXht1Kiu7nK 26200013 4533925
B. Stanic et al. IL-10-overexpressing B cells regulate innate and adaptive immune responses J. Allergy Clin. Immunol. 2015 135 771 780.e778 1:CAS:528:DC%2BC2cXhsFyrtbjN 25240783
J.N. Francis S.J. Till S.R. Durham Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy J. Allergy Clin. Immunol. 2003 111 1255 1261 1:CAS:528:DC%2BD3sXkvFGhuro%3D 12789226
R. Varona et al. Persistent regulatory T-cell response 2 years after 3 years of grass tablet SLIT: Links to reduced eosinophil counts, sIgE levels, and clinical benefit Allergy 2019 74 349 360 1:CAS:528:DC%2BC1MXjtVSgtrk%3D 30003552
G.W. Scadding et al. Effect of 2 Years of Treatment With Sublingual Grass Pollen Immunotherapy on Nasal Response to Allergen Challenge at 3 Years Among Patients With Moderate to Severe Seasonal Allergic Rhinitis: The GRASS Randomized Clinical Trial JAMA 2017 317 615 625 1:CAS:528:DC%2BC2sXhtlSntrbI 28196255 5479315
I. Eguiluz-Gracia et al. Recent developments and highlights in biomarkers in allergic diseases and asthma Allergy 2018 73 2290 2305 30289997
T. Nakayama et al. Th2 Cells in Health and Disease Annu Rev. Immunol. 2017 35 53 84 1:CAS:528:DC%2BC28XhvF2gurrJ 27912316
B. Pulendran D. Artis New Paradigms in Type 2 Immunity Science 2012 337 431 435 2012Sci..337.431P 1:CAS:528:DC%2BC38XhtVOisrnP 22837519 4078898
C. Scheiermann J. Gibbs L. Ince A. Loudon Clocking in to immunity Nat. Rev. Immunol. 2018 18 423 437 1:CAS:528:DC%2BC1cXhtFWqs7vE 29662121
M.M. Davis C.M. Tato D. Furman Systems immunology: just getting started Nat. Immunol. 2017 18 725 732 1:CAS:528:DC%2BC2sXhtVWls7rN 28632713 5790187
L. Bonaguro et al. A guide to systems-level immunomics Nat. Immunol. 2022 23 1412 1423 1:CAS:528:DC%2BB38XisVKit7%2FN 36138185
S. Delhalle S.F.N. Bode R. Balling M. Ollert F.Q. He A roadmap towards personalized immunology NPJ Syst. Biol. Appl 2018 4 29423275 5802799
D. Mrdjen et al. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease Immunity 2018 48 380 395.e386 1:CAS:528:DC%2BC1cXit12qs70%3D 29426702
N.G. Nuñez et al. Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors Med 2023 4 113 129.e117 36693381
C. Krieg et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy Nat. Med. 2018 24 144 153 1:CAS:528:DC%2BC1cXkslGqtA%3D%3D 29309059
C.M. Capelle et al. Early-to-mid stage idiopathic Parkinson’s disease shows enhanced cytotoxicity and differentiation in CD8 T-cells in females Nat. Commun. 2023 14 2023NatCo.14.7461C 1:CAS:528:DC%2BB3sXisVektbzK 37985656 10662447
M. Larché C.A. Akdis R. Valenta Immunological mechanisms of allergen-specific immunotherapy Nat. Rev. Immunol. 2006 6 761 771 16998509
T. Platts-Mills J. Vaughan S. Squillace J. Woodfolk R. Sporik Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study Lancet 2001 357 752 756 1:CAS:528:DC%2BD3MXhvVWrsb4%3D 11253969
D.S. Robinson et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma N. Engl. J. Med. 1992 326 298 304 1:STN:280:DyaK387gtVWnsQ%3D%3D 1530827
H. Hirai et al. Prostaglandin D2 Selectively Induces Chemotaxis in T Helper Type 2 Cells, Eosinophils, and Basophils via Seven-Transmembrane Receptor Crth2 J. Exp. Med. 2001 193 255 262 1:CAS:528:DC%2BD3MXksl2msg%3D%3D 11208866 2193345
A.D. Luster A.M. Tager T-cell trafficking in asthma: lipid mediators grease the way Nat. Rev. Immunol. 2004 4 711 724 1:CAS:528:DC%2BD2cXntFCmtLw%3D 15343370
M. Kratochvíl et al. GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets GigaScience 2020 9 33205814 7672468
W. Yu et al. Allergen-specific CD8(+) T cells in peanut-allergic individuals J. Allergy Clin. Immunol. 2019 143 1948 1952 1:CAS:528:DC%2BC1MXkvVSlt7k%3D 30682458 6510483
J.A. Aguilar-Pimentel et al. Specific CD8 T Cells in IgE-mediated Allergy Correlate with Allergen Dose and Allergic Phenotype Am. J. Respiratory Crit. Care Med. 2010 181 7 16 1:CAS:528:DC%2BC3cXht1Oisbs%3D
A. Kaushik et al. CD8(+) T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy Nat. Commun. 2022 13 2022NatCo.13.6646K 1:CAS:528:DC%2BB38XivVahsbzF 36333296 9636180
W. Yu X. Zhou S.C. Lyu M.M. Davis K.C. Nadeau Regulation of peanut-specific CD8(+) T cells from nonallergic individuals J. Allergy Clin. Immunol. 2021 147 385 387.e381 1:CAS:528:DC%2BB3cXitV2rur3O 32835695
M. Inaoki S. Sato F. Shirasaki N. Mukaida K. Takehara The Frequency of Type 2 CD8+ T Cells Is Increased in Peripheral Blood from Patients with Psoriasis Vulgaris J. Clin. Immunol. 2003 23 269 278 12959219
O. Palomares The role of regulatory T cells in IgE-mediated food allergy J. Investig. Allergol. Clin. Immunol. 2013 23 371 382 1:CAS:528:DC%2BC2cXhsVChtLk%3D 24459813
P. Bacher et al. Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans Cell 2016 167 1067 1078.e1016 1:CAS:528:DC%2BC28XhslCkurzL 27773482
D. Chiang et al. Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector T(H)2 subsets J. Allergy Clin. Immunol. 2018 141 2107 2120 1:CAS:528:DC%2BC1cXjs1eisrw%3D 29408715 5994177
M.S. Sundrud C. Trivigno Identity crisis of Th17 cells: Many forms, many functions, many questions Semin. Immunol. 2013 25 263 272 1:CAS:528:DC%2BC3sXhvVagtrzK 24239567
S. Chatterjee et al. CD38-NAD(+)Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response Cell Metab. 2018 27 85 100.e108 1:CAS:528:DC%2BC2sXhsl2lsrvK 29129787
F. Annunziato L. Cosmi F. Liotta E. Maggi S. Romagnani Defining the human T helper 17 cell phenotype Trends Immunol. 2012 33 505 512 1:CAS:528:DC%2BC38Xot12js7Y%3D 22682163
H.P. Gideon et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control Immunity 2022 55 827 846.e810 1:CAS:528:DC%2BB38XhtFejtbvO 35483355 9122264
C.L. Sokol et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response Nat. Immunol. 2009 10 713 720 1:CAS:528:DC%2BD1MXmtlaku7g%3D 19465907 3252751
S. Blank et al. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight Hymenoptera venom allergens Api m 5 and Ves v 3 J. Immunol. 2010 184 5403 5413 1:CAS:528:DC%2BC3cXltVGhtLs%3D 20348419
M. Rickmann et al. Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication Ann. Hematol. 2011 90 1047 1058 1:CAS:528:DC%2BC3MXpvFSnt74%3D 21520003 3150660
H. Karsunky M. Merad A. Cozzio I.L. Weissman M.G. Manz Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo J. Exp. Med 2003 198 305 313 1:CAS:528:DC%2BD3sXlvVyjtbk%3D 12874263 2194067
C. Waskow et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues Nat. Immunol. 2008 9 676 683 1:CAS:528:DC%2BD1cXmtVWqu74%3D 18469816 2746085
K. Moro et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells Nature 2010 463 540 544 2010Natur.463.540M 1:CAS:528:DC%2BD1MXhsFyhsL3O 20023630
S.R. Carding P.J. Egan γδ T cells: functional plasticity and heterogeneity Nat. Rev. Immunol. 2002 2 336 345 1:CAS:528:DC%2BD38Xjsl2rsrY%3D 12033739
M. Papadopoulou G. Sanchez Sanchez D. Vermijlen Innate and adaptive γδ T cells: How, when, and why Immunological Rev. 2020 298 99 116 1:CAS:528:DC%2BB3cXisVaht7bF
A. Palanichamy et al. Novel Human Transitional B Cell Populations Revealed by B Cell Depletion Therapy J. Immunol. 2009 182 5982 5993 1:CAS:528:DC%2BD1MXltlynsLw%3D 19414749
S. Shabir et al. Transitional B lymphocytes are associated with protection from kidney allograft rejection: a prospective study Am. J. Transpl. 2015 15 1384 1391 1:CAS:528:DC%2BC2MXmslWms78%3D
K. Oleinika C. Mauri A.D. Salama Effector and regulatory B cells in immune-mediated kidney disease Nat. Rev. Nephrol. 2019 15 11 26 1:CAS:528:DC%2BC1cXitlWnsr3O 30443016
P.A. Blair et al. CD19+CD24hiCD38hi B Cells Exhibit Regulatory Capacity in Healthy Individuals but Are Functionally Impaired in Systemic Lupus Erythematosus Patients Immunity 2010 32 129 140 1:CAS:528:DC%2BC3cXkvV2jsLo%3D 20079667
A. Cherukuri et al. Immunologic Human Renal Allograft Injury Associates with an Altered IL-10/TNF-α Expression Ratio in Regulatory B Cells J. Am. Soc. Nephrol. 2014 25 1575 1585 1:CAS:528:DC%2BC2cXhtl2gt7bO 24610932 4073434
K.S. Schluns L. Lefrançois Cytokine control of memory T-cell development and survival Nat. Rev. Immunol. 2003 3 269 279 1:CAS:528:DC%2BD3sXisFWkurs%3D 12669018
P.S. Lim C.R. Sutton S. Rao Protein kinase C in the immune system: from signalling to chromatin regulation Immunology 2015 146 508 522 1:CAS:528:DC%2BC2MXhs1Siu7zI 26194700 4693901
S.-M. Jeon Regulation and function of AMPK in physiology and diseases Exp. Mol. Med. 2016 48 e245 1:CAS:528:DC%2BC28XhtV2iu7nK 27416781 4973318
E. Wambre Effect of allergen-specific immunotherapy on CD4+ T cells Curr. Opin. Allergy Clin. Immunol. 2015 15 581 587 1:CAS:528:DC%2BC2MXhslOrtL%2FI 26509663 4687447
B.A. Croker et al. SOCS3 negatively regulates IL-6 signaling in vivo Nat. Immunol. 2003 4 540 545 1:CAS:528:DC%2BD3sXktVynsr8%3D 12754505
Y.-H. Chen S. Spencer A. Laurence J.E.D. Thaventhiran H.H. Uhlig Inborn errors of IL-6 family cytokine responses Curr. Opin. Immunol. 2021 72 135 145 1:CAS:528:DC%2BB3MXhtVOksbzI 34044328 8591178
S. Spencer et al. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses J. Exp. Med. 2019 216 1986 1998 1:CAS:528:DC%2BC1MXitVyktrzE 31235509 6719421
M. Aoki H. Aoki R. Ramanathan N.C. Hait K. Takabe Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential Mediators Inflamm. 2016 2016 26966342 4761394
K. Meguro et al. Role of Bcl-3 in the development of follicular helper T cells and in the pathogenesis of rheumatoid arthritis Arthritis Rheumatol. 2015 67 2651 2660 26138292
C. Pelzer M. Thome IKKalpha takes control of canonical NF-kappaB activation Nat. Immunol. 2011 12 815 816 1:CAS:528:DC%2BC3MXhtVKktr7P 21852778
C.-W. Wei et al. Equilibrative Nucleoside Transporter 3 Regulates T Cell Homeostasis by Coordinating Lysosomal Function with Nucleoside Availability Cell Rep. 2018 23 2330 2341 1:CAS:528:DC%2BC1cXhtVSgtrjK 29791845
C.J. Fox P.S. Hammerman C.B. Thompson Fuel feeds function: energy metabolism and the T-cell response Nat. Rev. Immunol. 2005 5 844 852 1:CAS:528:DC%2BD2MXhtFKls7jO 16239903
C.A. Hunter S.A. Jones IL-6 as a keystone cytokine in health and disease Nat. Immunol. 2015 16 448 457 1:CAS:528:DC%2BC2MXhtF2murbF 25898198
A. Mittal S. Papa G. Franzoso R. Sen NF-κB-Dependent Regulation of the Timing of Activation-Induced Cell Death of T Lymphocytes1 J. Immunol. 2006 176 2183 2189 1:CAS:528:DC%2BD28XpvV2msg%3D%3D 16455974
C. Tsigos et al. Dose-Dependent Effects of Recombinant Human Interleukin-6 on Glucose Regulation J. Clin. Endocrinol. Metab. 1997 82 4167 4170 1:CAS:528:DyaK2sXnvFyku7o%3D 9398733
J.N. Mandrekar Receiver operating characteristic curve in diagnostic test assessment J. Thorac. Oncol. 2010 5 1315 1316 20736804
W. Feng et al. NULISA: a proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing Nat. Commun. 2023 14 2023NatCo.14.7238F 1:CAS:528:DC%2BB3sXitlCgtb%2FE 37945559 10636041
J. Mauer J.L. Denson J.C. Bruning Versatile functions for IL-6 in metabolism and cancer Trends Immunol. 2015 36 92 101 1:CAS:528:DC%2BC2MXnvVWmsA%3D%3D 25616716
A. Mayer et al. Antigen presenting cell-derived IL-6 restricts Th2-cell differentiation Eur. J. Immunol. 2014 44 3252 3262 1:CAS:528:DC%2BC2cXhsVygs7%2FO 25092208
D.B. Golden K.A. Kwiterovich A. Kagey-Sobotka L.M. Lichtenstein Discontinuing venom immunotherapy: extended observations J. Allergy Clin. Immunol. 1998 101 298 305 1:STN:280:DyaK1c7osVemtw%3D%3D 9525443
M. Jutel et al. Allergen-specific immunotherapy with recombinant grass pollen allergens J. Allergy Clin. Immunol. 2005 116 608 613 1:CAS:528:DC%2BD2MXhtVWhtLbF 16159631
M. Frick et al. Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy J. Allergy Clin. Immunol. 2016 138 1663 1671 e1669 1:CAS:528:DC%2BC28XhtVymsrrN 27372568
J. Kohler et al. Component resolution reveals additional major allergens in patients with honeybee venom allergy J. Allergy Clin. Immunol. 2014 133 1383 1389, 1:CAS:528:DC%2BC2cXnt1egs78%3D 24440283
J. Reisinger et al. Allergen-specific nasal IgG antibodies induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity J. Allergy Clin. Immunol. 2005 116 347 354 1:CAS:528:DC%2BD2MXntVCqsr4%3D 16083789
M.H. Shamji et al. Nasal allergen-neutralizing IgG(4) antibodies block IgE-mediated responses: Novel biomarker of subcutaneous grass pollen immunotherapy J. Allergy Clin. Immunol. 2019 143 1067 1076 1:CAS:528:DC%2BC1MXktlOntbo%3D 30445057
E. Gomez et al. Initial immunological changes as predictors for house dust mite immunotherapy response Clin. Exp. Allergy 2015 45 1542 1553 1:CAS:528:DC%2BC2MXhsFejtbvL 26032922
B. Palathumpattu et al. Correlation of the combined symptom and medication score with quality of life, symptom severity and symptom control in allergic rhinoconjunctivitis Clin. Transl. Allergy 2022 12 36225263 9533220
M. Chimen et al. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface J. Immunol. 2017 198 2834 2843 1:CAS:528:DC%2BC2sXksVOjtrY%3D 28193827 5357784
S. Fillatreau C.H. Sweenie M.J. McGeachy D. Gray S.M. Anderton B cells regulate autoimmunity by provision of IL-10 Nat. Immunol. 2002 3 944 950 1:CAS:528:DC%2BD38XnsVGrs7g%3D 12244307
K. Jansen et al. Regulatory B cells, A to Z Allergy 2021 76 2699 2715 1:CAS:528:DC%2BB3MXis1KjsrzN 33544905
P. Satitsuksanoa et al. B cells: The many facets of B cells in allergic diseases J. Allergy Clin. Immunol. 2023 152 567 581 1:CAS:528:DC%2BB3sXht1KltrrN 37247640
C. Mauri M. Menon Human regulatory B cells in health and disease: therapeutic potential J. Clin. Investig. 2017 127 772 779 28248202 5330739
F. Braza et al. A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation Allergy 2015 70 1421 1431 1:CAS:528:DC%2BC2MXhslSrtbbM 26194936
D. Maseda et al. Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo J. Immunol. 2012 188 1036 1048 1:CAS:528:DC%2BC38XpslKjtQ%3D%3D 22198952
M.B. Hansen Interleukin-6 signaling requires only few IL-6 molecules: Relation to physiological concentrations of extracellular IL-6 Immun. Inflamm. Dis. 2020 8 170 180 1:CAS:528:DC%2BB3cXovVCisLs%3D 32103575 7212196
K.J. Laidler M.C. King Development of transition-state theory J. Phys. Chem. 1983 87 2657 2664 1:CAS:528:DyaL3sXksF2ntLg%3D
A. Goldberg R. Confino-Cohen Bee venom immunotherapy – how early is it effective? Allergy 2010 65 391 395 1:STN:280:DC%2BC3c3ovVKmtA%3D%3D 19839973
N. Chaput et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue Gut 2009 58 520 529 1:CAS:528:DC%2BC3cXivFWlsbw%3D 19022917
B. Adams et al. Expansion of regulatory CD8+ CD25+ T cells after neonatal alloimmunization Clin. Exp. Immunol. 2011 163 354 361 1:STN:280:DC%2BC3M7ns1Khuw%3D%3D 21175595 3048619
V. Niederlova O. Tsyklauri T. Chadimova O. Stepanek CD8+ Tregs revisited: A heterogeneous population with different phenotypes and properties Eur. J. Immunol. 2021 51 512 530 1:CAS:528:DC%2BB3MXktlalurY%3D 33501647
B. Bisikirska J. Colgan J. Luban J.A. Bluestone K.C. Herold TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs J. Clin. Investig. 2005 115 2904 2913 1:CAS:528:DC%2BD2MXhtVygt7fN 16167085 1201661
L. Lin F. Dai J. Wei Z. Chen CD8(+) Tregs ameliorate inflammatory reactions in a murine model of allergic rhinitis Allergy Asthma Clin. Immunol. 2021 17 74 1:CAS:528:DC%2BB3MXitVWqu7zJ 34294130 8296699
G. Filaci et al. Nonantigen specific CD8+ T suppressor lymphocytes originate from CD8+CD28- T cells and inhibit both T-cell proliferation and CTL function Hum. Immunol. 2004 65 142 156 1:CAS:528:DC%2BD2cXht1KmtbY%3D 14969769
L. Tortola et al. High-Dimensional T Helper Cell Profiling Reveals a Broad Diversity of Stably Committed Effector States and Uncovers Interlineage Relationships Immunity 2020 53 597 613.e596 1:CAS:528:DC%2BB3cXhsVyrsLnI 32735846
D. Lozano-Ojalvo S.R. Tyler M.C. Berin Is the plasticity of the Th17 subset a key source of allergenic Th2 responses? Allergy 2021 76 3238 3240 1:CAS:528:DC%2BB3MXhs1KnurvI 33930200
Wang, C. et al. Dendritic cells direct circadian anti-tumor immune responses. Nature614, 136–143 (2023).
K. Dreschler et al. Impact of immunotherapy on blood dendritic cells in patients with Hymenoptera venom allergy J. Allergy Clin. Immunol. 2011 127 487 494.e483 1:CAS:528:DC%2BC3MXhtlSqurc%3D 21281873
J.H. Cho M. Feldman Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies Nat. Med. 2015 21 730 738 1:CAS:528:DC%2BC2MXhtFeisrjO 26121193 5716342
R.L. Gieseck M.S. Wilson T.A. Wynn Type 2 immunity in tissue repair and fibrosis Nat. Rev. Immunol. 2018 18 62 76 1:CAS:528:DC%2BC2sXhtl2ru7fI 28853443
H.L. Mueller Diagnosis and Treatment of Insect Sensitivity J. Asthma Res. 1966 3 331 333 1:STN:280:DyaF2s%2FktV2rtw%3D%3D 4380730
C.M. Capelle et al. Combinatorial analysis reveals highly coordinated early-stage immune reactions that predict later antiviral immunity in mild COVID-19 patients Cell Rep. Med. 2022 3 1:CAS:528:DC%2BB38XptlCitrc%3D 35480624 8960124
O. Hunewald A. Demczuk J. Longworth M. Ollert CyCadas: accelerating interactive annotation and analysis of clustered cytometry data Bioinformatics 2024 40 39374546 11488975
H.F. Bradford et al. Inactive disease in patients with lupus is linked to autoantibodies to type I interferons that normalize blood IFNalpha and B cell subsets Cell Rep. Med 2023 4 1:CAS:528:DC%2BB3sXhsVyhsLo%3D 36652906 9873953
F. Hedin M. Konstantinou A. Cosma Data integration and visualization techniques for post-cytometric analysis of complex datasets Cytom. Part A 2021 99 930 938
Hefeng F. Q. SYSTACT CyTOF dataset associated with Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study. Zenodo. https://doi.org/10.5281/zenodo.14001917 (2024).
Glaab E. Analysis Scripts for SysTACT. Zenodo. https://zenodo.org/records/13926742 (2024).