[en] Objective
Genetic generalized epilepsies (GGEs) comprise the most common genetically determined epilepsy syndromes, following a complex mode of inheritance. Although many important common and rare genetic factors causing or contributing to these epilepsies have been identified in the past decades, many features of the genetic architecture are still insufficiently understood. This study integrates genome‐wide association study (GWAS) data from the International League Against Epilepsy Consortium on Complex Epilepsies with transcriptome‐wide association studies to identify genes whose genetically regulated expression levels are associated with epilepsy.
Methods
To achieve this, we used multiple computational approaches, including MAGMA, a tool for gene analysis of GWAS data, and its derivatives E‐MAGMA and H‐MAGMA, to improve gene mapping accuracy by utilizing tissue‐specific expression and chromatin interaction data. Furthermore, we developed ME‐MAGMA to incorporate methylation quantitative trait loci data, providing insights into epigenetic factors.
Results
We identified a total of 897 false discovery rate‐corrected (<.05) candidates. These include voltage‐gated calcium channels, voltage‐gated potassium channels, and other genes such as NPRL2, CACNB2, and KCNT1 associated with epilepsy pathogenesis that act as key players in neuronal communication and signaling in the brain.
Significance
In this study, we propose new candidate genes to expand the dataset of potential epilepsy‐causing genes. Further research on these genes may enhance our understanding of the complex regulatory mechanisms underlying GGE and other types of epilepsy, potentially revealing targets for therapeutic intervention.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Neurology Genetics & genetic processes
Author, co-author :
Mushunuri, Ashwini ; Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg Otto von Guericke University Magdeburg Germany ; Clinic for Plastic, Aesthetic, and Hand Surgery, Medical Faculty, University Hospital Magdeburg Otto von Guericke University Magdeburg Germany ; Department of Engineering Brandenburg University of Applied Sciences Brandenburg Germany
Adesoji, Oluyomi ; Cologne Center for Genomics University of Cologne Cologne Germany ; University Hospital Cologne, Medical Faculty University of Cologne Cologne Germany
Lerche, Holger ; Department of Epileptology Eberhard Karls University Tübingen Germany
Becker, Albert ; Institute for Cellular Neurosciences II Medical Faculty, University of Bonn Bonn Germany
Grimm, Daniela ; Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg Otto von Guericke University Magdeburg Germany ; Clinic for Plastic, Aesthetic, and Hand Surgery, Medical Faculty, University Hospital Magdeburg Otto von Guericke University Magdeburg Germany ; Department of Biomedicine Faculty of Health, Aarhus University Aarhus Denmark
Nothnagel, Michael ; Cologne Center for Genomics University of Cologne Cologne Germany ; University Hospital Cologne, Medical Faculty University of Cologne Cologne Germany
Schulz, Herbert ; Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg Otto von Guericke University Magdeburg Germany ; Clinic for Plastic, Aesthetic, and Hand Surgery, Medical Faculty, University Hospital Magdeburg Otto von Guericke University Magdeburg Germany
External co-authors :
yes
Language :
English
Title :
Genetic risk factor identification for common epilepsies guided by integrative omics data analysis
FNR16394868 - MechEpi-2 - Epileptogenesis Of Genetic Epilepsies, 2021 (01/01/2022-31/12/2024) - Alexander Skupin
Name of the research project :
U-AGR-7124 - INTER/DFG/21/16394868/MechEPI2 - SKUPIN Alexander
Funders :
FNR - Fonds National de la Recherche DFG - German Research Foundation
Funding number :
16394868
Funding text :
This research was funded by the German Research Foundation and the Luxembourg Fond Nationale de Recherche as a part of the research unit FOR-2715 (grants SHU3585/1.1, NO755/6-1, NO755/13-1, Le1030/16-2, INTER/DFG/21/16394868 MechEPI2, BE 2078/5-1, BE 2078/10-2).
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology Epilepsia. 2017;58:512–521.
Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era. Genome Med. 2015;7:91.
International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun. 2018;9:5269.
International League Against Epilepsy Consortium on Complex Epilepsies. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 2023;55:1471–1482.
Song M, Liu J, Yang Y, Lv L, Li W, Luo XJ. Genome-wide meta-analysis identifies two novel risk loci for epilepsy. Front Neurosci. 2021;15:722592.
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.
Lu Q, Powles RL, Wang Q, He BJ, Zhao H. Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS Genet. 2016;12:e1005947.
Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104:65–75.
Schulz H, Ruppert AK, Herms S, Wolf C, Mirza-Schreiber N, Stegle O, et al. Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nat Commun. 2017;8:1511.
Gerring ZF, Mina-Vargas A, Gamazon ER, Derks EM. E-MAGMA: an eQTL-informed method to identify risk genes using genome-wide association study summary statistics. Bioinformatics. 2021;37:2245–2249.
Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23:583–593.
Price ME, Cotton AM, Lam LL, Farre P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin. 2013;6:4.
Purcell, Shaun CC. Available from: www.cog-genomics.org/plink/2.0/.
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.
R Core Team Rao. R: A language and environment for statistical computing. 2013.
Wickham H, Averick M. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.
Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, et al. VarElect: the phenotype-based variation prioritizer of the GeneCards suite. BMC Genomics. 2016;17(Suppl 2):444.
Salmena L. Pseudogenes: four decades of discovery. Methods Mol Biol. 2021;2324:3–18.
Koko M, Krause R, Sander T, Bobbili DR, Nothnagel M, May P, et al. Distinct gene-set burden patterns underlie common generalized and focal epilepsies. EBioMedicine. 2021;72:103588.
Prapiadou S, Mayerhofer E, Georgakis MK, Kals M, Radmanesh F, Izzy S, et al. Exploring synaptic pathways in traumatic brain injury: a Cross-phenotype genomics approach. J Neurotrauma. 2025;42:131–142.
Alsaif HS, Al Ali H, Faqeih E, Ramadan SM, Barth M, Colin E, et al. ZNF668 deficiency causes a recognizable disorder of DNA damage repair. Hum Genet. 2021;140:1395–1401.
Kobow K, Ziemann M, Kaipananickal H, Khurana I, Muhlebner A, Feucht M, et al. Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia. 2019;60:1091–1103.
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem. 2024;168:3853–3871.
Pippucci T, Parmeggiani A, Palombo F, Maresca A, Angius A, Crisponi L, et al. A novel null homozygous mutation confirms CACNA2D2 as a gene mutated in epileptic encephalopathy. PLoS One. 2013;8:e82154.
Punetha J, Karaca E, Gezdirici A, Lamont RE, Pehlivan D, Marafi D, et al. Biallelic CACNA2D2 variants in epileptic encephalopathy and cerebellar atrophy. Ann Clin Transl Neurol. 2019;6:1395–1406.
Kjaer C, Palasca O, Barzaghi G, Bak LK, Durhuus RKJ, Jakobsen E, et al. Differential expression of the beta3 subunit of voltage-gated Ca(2+) channel in mesial temporal lobe epilepsy. Mol Neurobiol. 2023;60:5755–5769.
Tinuper P, Bisulli F, Cross JH, Hesdorffer D, Kahane P, Nobili L, et al. Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology. 2016;86(10):1834–1842.
McTague A, Nair U, Malhotra S, Meyer E, Trump N, Gazina EV, et al. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology. 2018;90:e55–e66.
Wang J, Wen Y, Zhang Q, Yu S, Chen Y, Wu X, et al. Gene mutational analysis in a cohort of Chinese children with unexplained epilepsy: identification of a new KCND3 phenotype and novel genes causing Dravet syndrome. Seizure. 2019;66:26–30.
Takayama K, Ohno S, Ding WG, Ashihara T, Fukumoto D, Wada Y, et al. A de novo gain-of-function KCND3 mutation in early repolarization syndrome. Heart Rhythm. 2019;16:1698–1706.
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res. 2022;100:413–443.
Lambacher NJ, Bruel AL, van Dam TJ, Szymanska K, Slaats GG, Kuhns S, et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol. 2016;18:122–131.
Su Y, Cao N, Zhang D, Wang M. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy. Ageing Res Rev. 2024;96:102248.
Lorenzi I, Oeljeklaus S, Aich A, Ronsor C, Callegari S, Dudek J, et al. The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis. Biochim Biophys Acta Mol Cell Res. 2018;1865:323–333.
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, et al. Zinc-finger proteins in health and disease. Cell Death Discov. 2017;3:17071.
Akter H, Rahman MM, Sarker S, Basiruzzaman M, Islam MM, Rahaman MA, et al. Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders. Front Genet. 2023;14:955631.
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.31–1.30.33.
Zhang MW, Liang XY, Wang J, Gao LD, Liao HJ, He YH, et al. Epilepsy-associated genes: an update. Seizure. 2024;116:4–13.
Larivière S. Multiscale Connectomics of Temporal Lobe Epilepsy. Montreal: McGill University (Canada); 2022.
Hui JB, Silva JCH, Pelaez MC, Sevigny M, Venkatasubramani JP, Plumereau Q, et al. NPRL2 inhibition of mTORC1 controls Sodium Channel expression and brain amino acid homeostasis. eNeuro. 2022;9:ENEURO.0317-21.2022.
Laribee RN. Transcriptional and epigenetic regulation by the mechanistic target of rapamycin complex 1 pathway. J Mol Biol. 2018;430(7):4874–4890.
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 function in brain development and disease cells. 2022;11.
Sikorska M, Sandhu JK, Deb-Rinker P, Jezierski A, Leblanc J, Charlebois C, et al. Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J Neurosci Res. 2008;86:1680–1693.
Peters A, Sherman LS. Diverse roles for Hyaluronan and Hyaluronan receptors in the developing and adult nervous system. Int J Mol Sci. 2020;21:5988.
Levallet G, Creveuil C, Bekaert L, Peres E, Planchard G, Lecot-Cotigny S, et al. Promoter hypermethylation of genes encoding for RASSF/hippo pathway members reveals specific alteration pattern in diffuse gliomas. J Mol Diagn. 2019;21:695–704.
Le N, Nagarajan R, Wang JY, Svaren J, LaPash C, Araki T, et al. Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci. 2005;8:932–940.
Li Q, Xu Z, Qin J, Yang Z. Epilepsy and developmental delay in pediatric patients with PTEN variants and a literature review. Pediatr Neurol. 2025;163:35–44.
Sran S, Bedrosian TA. RAS pathway: the new frontier of brain mosaicism in epilepsy. Neurobiol Dis. 2023;180:106074.
Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS, Vissers LE, et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet. 2012;91(13):73–82.
Braden AA, Xiao J, Hori R, Brown C, Khan MM. An overview of UBTF Neuroregression syndrome. Brain Sci. 2024;14:179.
Lovrecic L, Bertok S, Zerjav Tansek M. A new case of an extremely rare 3p21.31 interstitial deletion. Mol Syndromol. 2016;7:93–98.
Myers KA, Mandelstam SA, Ramantani G, Rushing EJ, de Vries BB, Koolen DA, et al. The epileptology of Koolen-de Vries syndrome: electro-clinico-radiologic findings in 31 patients. Epilepsia. 2017;58:1085–1094.
Consortium E, Consortium EM, Steffens M, Leu C, Ruppert AK, Zara F, et al. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet. 2012;21:5359–5372.
Adesoji OM, Schulz H, May P, Krause R, Lerche H, Nothnagel M. Benchmarking of univariate pleiotropy detection methods applied to epilepsy. Hum Mutat. 2022;43:1314–1332.
Au PYB, McNiven V, Phillips L, Innes AM, Kline AD. Au-Kline Syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews((R)). Seattle (WA): University of Washington; 1993.
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, et al. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Med. 2021;13(63). https://doi.org/10.1186/s13073-021-00870-6
Marshall CR, Young EJ, Pani AM, Freckmann ML, Lacassie Y, Howald C, et al. Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11. Am J Hum Genet. 2008;83:106–111.
Van Nuland A, Reddy T, Quassem F, Vassalli JD, Berg AT. PACS1-neurodevelopmental disorder: clinical features and trial readiness. Orphanet J Rare Dis. 2021;16:386.
Khurana E, Lam HY, Cheng C, Carriero N, Cayting P, Gerstein MB. Segmental duplications in the human genome reveal details of pseudogene formation. Nucleic Acids Res. 2010;38:6997–7007.