Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Learning to Represent Patches
TANG, Xunzhu; TIAN, Haoye; Chen, Zhenghan et al.
2024In Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering: Companion, ICSE-Companion 2024
Peer reviewed
 

Files


Full Text
ICSE24Poster-Patcherizer.pdf
Author postprint (575.13 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Abstract Syntax Trees; Code changes; Convolutional neural network; State of the art; Software
Abstract :
[en] We propose Patcherizer, a novel patch representation methodology that combines context and structure intention features to capture the semantic changes in Abstract Syntax Trees (ASTs) and surrounding context of code changes. Utilizing graph convolutional neural networks and transformers, Patcherizer effectively captures the underlying intentions of patches, outperforming state-of-the-art representations with significant improvements in BLEU, ROUGE-L, and METEOR metrics for generating patch descriptions.
Disciplines :
Computer science
Author, co-author :
TANG, Xunzhu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
TIAN, Haoye  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Tegawendé François d A BISSYANDE
Chen, Zhenghan ;  Peking University, China
PIAN, Weiguo  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
EZZINI, Saad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Jacques KLEIN ; Lancaster University, United Kingdom
KABORE, Abdoul Kader  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SNT Office > Project Coordination
HABIB, Andrew  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > TruX > Team Tegawendé François d A BISSYANDE
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
External co-authors :
yes
Language :
English
Title :
Learning to Represent Patches
Publication date :
14 April 2024
Event name :
Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings
Event place :
Lisbon, Prt
Event date :
14-04-2024 => 20-04-2024
By request :
Yes
Main work title :
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering: Companion, ICSE-Companion 2024
Publisher :
IEEE Computer Society
ISBN/EAN :
9798400705021
Peer reviewed :
Peer reviewed
Name of the research project :
R-AGR-3885 - H2020-ERC-NATURAL - BISSYANDE Tegawendé
Funders :
ACM and ACM Special Interest Group on Software Engineering
Centro Cultural de Belem
et al.
Faculty of Engineering of University of Porto
IEEE Computer Society and IEEE Technical Council on Software Engineering
INESC-ID
Available on ORBilu :
since 10 September 2025

Statistics


Number of views
43 (3 by Unilu)
Number of downloads
25 (0 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
3
WoS citations
 
2

Bibliography


Similar publications



Contact ORBilu