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Abstract
We propose Patcherizer, a novel patch representation methodology
that combines context and structure intention features to capture
the semantic changes in Abstract Syntax Trees (ASTs) and surround-
ing context of code changes. Utilizing graph convolutional neural
networks and transformers, Patcherizer effectively captures the
underlying intentions of patches, outperforming state-of-the-art
representations with significant improvements in BLEU, ROUGE-L,
and METEOR metrics for generating patch descriptions.
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1 Introduction
Recent research has evolved from treating code and patches as
mere token sequences [3, 4] to recognizing the importance of code
structure, using tools like Abstract Syntax Trees (ASTs) for deeper
structural understanding [1, 13]. Simple textual diffs, marked by +
and-, fail to fully convey code semantics, leading to approaches like
CC2Vec [5] that integrate ASTs for more structured representations.
The latest efforts aim to merge token and structure information for
enhanced patch representation, with applications such as FIRA’s
patch description generation [3].

On the one hand, token-based approaches for patch representa-
tion [5] lack structural intention information of source code. On
the other hand, graph-based representation of patches [7] lacks the
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Figure 1: Overview of Patcherizer.
context intention which is better represented by the sequence of
tokens [5, 10, 12] of the patch itself. Approaches that try to combine
context and AST information to represent patches (e.g., FIRA [3])
do not use the intention features of either sequence or graph from
the patch but rather rely on representing the code changes while
adding some ad-hoc annotations to highlight the changes for the
model. This paper introduces Patcherizer, a novel approach for
patch representation. Patcherizer combines contextual information
around code changes with two innovative components: a SeqInten-
tion representation for sequential patches and a GraphIntention
representation for structural aspects. These elements enable the
utilization of advanced deep learning models, making Patcherizer
adaptable and pre-trained for various downstream tasks. The paper
presents a comprehensive evaluation of Patcherizer in generat-
ing natural language patch descriptions. The contributions of this
work are manifold: a novel approach for learning patch representa-
tions that merges sequence and graph data, development of a large
dataset of 90k parsable patches to facilitate accurate AST difference
extraction, and experimental results demonstrate that Patcherizer
outperform existing methods and baselines in patch description
generation task.

2 Patcherizer
Patcherizer is designed to process software patches by capturing
multifaceted data elements. In its preprocessing stage, Patcherizer
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meticulously extracts essential information such as the code context
prior to the patch application, the specific lines added or removed
(the plus and minus lines), and the variations in the Abstract Syntax
Tree (AST) graphs due to the patch. This comprehensive approach
ensures that both textual and structural changes in the patch are
thoroughly analyzed. Patcherizer has two innovative encoders: the
Sequence Intention Encoder and the Graph Intention Encoder. The
Sequence Intention Encoder, leveraging a Transformer embedding
layer ([2]), delves deep into the semantics of sequence changes in
the patch. It surpasses conventional line-based analysis by incorpo-
rating contextual code data, offering a more nuanced understanding
of the patch’s impact. Concurrently, the Graph Intention Encoder
employs a Graph Convolutional Network (GCN) ([6]) to decipher
the structural shifts in the code at a graph level, analyzing the
ASTs pre and post-patch application to comprehend the underly-
ing intentions of code alterations. Following the encoding phase,
Patcherizer amalgamates the diverse embeddings—encompassing
sequence and graph-level data—into a singular, comprehensive rep-
resentation of the patch. This is achieved through anAdd function,
which effectively merges the SeqIntention embeddings (comprising
components like 𝑂𝑐𝑐𝑝 , 𝑂𝑐𝑐𝑚 , and others) with the GraphIntention
embedding 𝑂𝐺𝑟𝑎𝑝ℎ𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 . The resulting unified representation,
𝐸𝑃𝑎𝑡𝑐ℎ𝑒𝑟𝑖𝑧𝑒𝑟 , embodies a holistic view of the patch. Furthermore,
Patcherizer is designed with adaptability for a spectrum of down-
stream software engineering tasks, such as patch description gen-
eration. Experimental results indicate that Patcherizer outperforms
the state-of-the-art approaches.

3 Experimental Results
The experiment evaluated Patcherizer’s performance on patch de-
scription generation task. Using the FIRA dataset and metrics like
BLEU, ROUGE-L, and METEOR, Patcherizer was compared against
both generative and retrieval-based methods. The results demon-
strated that Patcherizer outperformed competing techniques in
nearly all metrics, highlighting its effectiveness in both generating
new patch descriptions and retrieving existing ones.
Table 1: PerformanceResults of patch description generation.

Type Approach Rouge-L (%) BLEU (%) METEOR (%)

Ge
ne
ra
tio

n

Codisum [12] 19.73 16.55 12.83
FIRA [3] 21.58 17.67 14.93
CoreGen [10] (Transformer) 18.22 14.15 12.90
CCRep [8] 23.41 19.70 15.84

Patcherizer 25.45 23.52 21.23

Re
tri
ev
al CC2Vec [5] 12.21 12.25 11.21

NNGen [9] 9.16 9.53 16.56
CoRec [11] 15.47 13.03 12.04

Patcherizer 17.32 15.21 17.25

“Generation" for generation-based strategy.
“Retrieval" for retrieval-based approaches.
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Figure 2: Comparison of the distributions of BLEU scores for
different approaches in patch description generation

4 Conclusion
Patcherizer introduces a novel approach in distributed patch rep-
resentation learning by integrating contextual, structural, and se-
quential information from code changes, utilizing Sequence and
Graph Intention Encoders for comprehensive patch analysis. Its
evaluation on patch description generation shows that Patcherizer
significantly outperforms existing baselines and state-of-the-art
methods, demonstrating its effectiveness and robustness in patch
representation.

DataAvailability: https://anonymous.4open.science/r/Patcherizer-
1E04
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