Thèse de doctorat (Mémoires et thèses)
5G-Enhanced Indoor UAV Localization and SLAM through Sensor Fusion
KABIRI, Meisam
2025
 

Documents


Texte intégral
Meisam_thesis.pdf
Postprint Auteur (7.41 MB) Licence Creative Commons - Attribution, Partage dans les Mêmes Conditions
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
5G localization, UAV navigation, indoor positioning, SLAM, sensor fusion, Time-of-Arrival, Error State Kalman Filter, Pose Graph Optimization, visual-inertial odometry, GPS-denied environments, wireless positioning, radio frequency localization, unmanned aerial vehicles, simultaneous localization and mapping
Résumé :
[en] Indoor localization and navigation for Unmanned Aerial Vehicles (UAVs) remain challenging due to GPS denial and the limitations of traditional visual-inertial systems. The emergence of 5G networks offers new opportunities for precise indoor positioning, but their integration with existing UAV navigation systems remains unexplored. This thesis systematically investigates the feasibility of integrating 5G Time-of-Arrival (TOA) measurements with advanced sensor fusion techniques to enhance indoor localization and SLAM (Simultaneous Localization and Mapping). Two approaches are proposed for localization: a real-time Error State Kalman Filter (ESKF) framework and a Pose Graph Optimization (PGO) method. The study leverages the EuRoC MAV dataset, augmented with simulated 5G TOA measurements, to evaluate system performance across diverse indoor scenarios and 5G base station densities. Using just IMU and TOA measurements as a minimal sensor setup, both proposed methods demonstrate significant improvements in pose estimation accuracy and drift reduction, with the PGO-based approach achieving superior results, reaching accuracies up to 13 cm with five base stations. A unified SLAM framework is developed that incorporates 5G TOA measurements alongside visual-inertial data, providing global localization capabilities and resolving scale ambiguity in monocular configurations. For local SLAM, the system operates effectively even with unknown base station positions and intermittent connectivity patterns, demonstrating an average 4.40% improvement in local accuracy while maintaining reliable scale estimation. Furthermore, TOA integration serves as an effective alternative to loop closure, improving accuracy by up to 29.6% in scenarios where traditional loop closure is unavailable. Comparative analysis with state-of-the-art approaches confirms the robustness of the proposed methods even under relaxed operational constraints. This research bridges the gap between visual-inertial and 5G radio-frequency-based approaches, establishing realistic baselines for understanding the practical impact of 5G technology on robotic localization and navigation in complex indoor environments.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KABIRI, Meisam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > Automation > Team Holger VOOS
Langue du document :
Anglais
Titre :
5G-Enhanced Indoor UAV Localization and SLAM through Sensor Fusion
Date de soutenance :
13 mars 2025
Institution :
Unilu - Université du Luxembourg [Faculty of Science, Technology and Medicine (FSTM)], Esch sur Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Sciences de l'Ingénieur (DIP_DOC_0005_B)
Promoteur :
VOOS, Holger  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
PALATTELLA, Maria Rita;  LIST - Luxembourg Institute of Science and Technology
Président du jury :
OLIVARES MENDEZ, Miguel Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
Secrétaire :
SANCHEZ LOPEZ, Jose Luis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Membre du jury :
LAMBOT, Sébastien
Focus Area :
Computational Sciences
Projet FnR :
FNR13713801 - 5G-Sky - Interconnecting The Sky In 5g And Beyond - A Joint Communication And Control Approach, 2019 (01/06/2020-30/11/2023) - Bjorn Ottersten
Disponible sur ORBilu :
depuis le 20 mai 2025

Statistiques


Nombre de vues
234 (dont 8 Unilu)
Nombre de téléchargements
234 (dont 7 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu