Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
CTQW-GraphSAGE: Trainabel Continuous-Time Quantum Walk On Graph
XU, Yangjie; HUANG, Hui; STATE, Radu
2024In Wand, Michael; Schmidhuber, Jürgen (Eds.) Artificial Neural Networks and Machine Learning – ICANN 2024 - 33rd International Conference on Artificial Neural Networks, Proceedings
Peer reviewed
 

Documents


Texte intégral
CTQW(ICANN).pdf
Preprint Auteur (260.7 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Continuous-Time Quantum Walk; Graph Neural Networks; Node Sampling; Classical modeling; Continuous-time quantum walks; Graph neural networks; Hybrid model; Machine learning models; Machine-learning; Network machines; Node sampling; Quantum Computing; Quantum machines; Theoretical Computer Science; Computer Science (all)
Résumé :
[en] In recent years, Graph Neural Networks (GNNs) have made significant strides in various applications, demonstrating their potential in handling complex networked data. Simultaneously, quantum machine learning has emerged as a rapidly advancing and promising field, leveraging quantum computing principles to enhance machine learning models. Benefiting from the advancements in both GNNs and quantum machine learning, we propose a novel hybrid model called CTQW-GraphSAGE. This model aims to combine the strengths of classical and quantum approaches to improve performance on graph-related tasks. The model is built on the GraphSAGE framework, enhanced with quantum feature mapping and Continuous-Time Quantum Walk (CTQW). These enhancements are used to calculate aggregation weights for neighboring nodes relative to the target node, thereby integrating quantum properties into the classical model. We evaluate the proposed model on various benchmark datasets and compared our results with several baseline graph neural network methods. CTQW-GraphSAGE achieves comparable results to the classical models on most of the selected datasets on node classification tasks.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
XU, Yangjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
HUANG, Hui  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
CTQW-GraphSAGE: Trainabel Continuous-Time Quantum Walk On Graph
Date de publication/diffusion :
2024
Nom de la manifestation :
ICANN 2024
Lieu de la manifestation :
Lugano, Che
Date de la manifestation :
17-09-2024 => 20-09-2024
Sur invitation :
Oui
Titre de l'ouvrage principal :
Artificial Neural Networks and Machine Learning – ICANN 2024 - 33rd International Conference on Artificial Neural Networks, Proceedings
Editeur scientifique :
Wand, Michael
Schmidhuber, Jürgen
Maison d'édition :
Springer Science and Business Media Deutschland GmbH
ISBN/EAN :
978-3-03-172343-8
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 05 mai 2025

Statistiques


Nombre de vues
73 (dont 5 Unilu)
Nombre de téléchargements
81 (dont 5 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
3
OpenCitations
 
0
citations OpenAlex
 
1
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu