
CTQW-GraphSAGE: Trainabel
Continuous-Time Quantum Walk On Graph

Yangjie XU, Hui Huang, and Radu State

SEDAN, SnT-Interdisciplinary Centre for Security, Reliability and Trust, University
of Luxembourg, Campus Kirchberg, 29 Avenue J.F. Kennedy, L-1855 Luxembourg

{yangjie.xu, huang.hui, radu.state}@uni.lu

Abstract. In recent years, Graph Neural Networks (GNNs) have made
significant strides in various applications, demonstrating their potential
in handling complex networked data. Simultaneously, quantum machine
learning has emerged as a rapidly advancing and promising field, leverag-
ing quantum computing principles to enhance machine learning models.
Benefiting from the advancements in both GNNs and quantum machine
learning, we propose a novel hybrid model called CTQW-GraphSAGE.
This model aims to combine the strengths of classical and quantum ap-
proaches to improve performance on graph-related tasks. The model
is built on the GraphSAGE framework, enhanced with quantum fea-
ture mapping and Continuous-Time Quantum Walk (CTQW). These
enhancements are used to calculate aggregation weights for neighboring
nodes relative to the target node, thereby integrating quantum proper-
ties into the classical model. We evaluate the proposed model on various
benchmark datasets and compared our results with several baseline graph
neural network methods. CTQW-GraphSAGE achieves comparable re-
sults to the classical models on most of the selected datasets on node
classification tasks.

Keywords: Graph Neural Networks, Continuous-Time Quantum Walk,
Node Sampling.

1 Introduction

Graph-structured data analysis has become an indispensable tool in modern data
science, especially Graph Neural Networks (GNNs) has achieved giant success
across various domains, including social networks, biological networks, knowl-
edge graphs, and more [1–3]. GNNs are designed to perform computation on
graphs, enabling the model to learn and generalize from topological structures.
The fundamental operation in GNNs is the message passing or neighborhood
aggregation mechanism. In this framework, nodes aggregate feature information
from their neighbors, allowing the model to capture both local structures and
global graph properties. This iterative process involves updating the representa-
tion of each node by aggregating representations of its neighbors and potentially
its features. Then, undertake different downstream tasks fit to different domains
and scenarios.

2 Yangjie Xu et al.

However, the traditional neighborhood aggregation strategy only considers
the neighboring nodes of the target node, ignoring the more complex topological
information. Moreover, the aggregation methods based on pooling and mean
represent a fixed-parameters approach, involving no trainable parameters during
the aggregation.

To preserve the complex topological information based on target nodes during
graph analysis, this paper introduces a k-hop sampling method. This approach
extends beyond merely considering a node’s immediate neighbors to include
structural information with k-hops in the graph. A weighted aggregation that
leverages both the topological information and the node features of the graph
is then employed to enhance the adaptability and flexibility of the aggregation
strategy. The weights for the aggregation are derived using Continuous-Time
Quantum Walk (CTQW) within the graph. Furthermore, a variational quantum
circuit is utilized to generate parametric embedding, thereby transforming it into
a trainable Continuous-Time Quantum Walk.

This paper introduces a quantum-classical hybrid model with an aggrega-
tion method based on Continuous-Time Quantum Walk, the so-called CTQW-
GraphSAGE. This method aims to aggregate more complex topological infor-
mation between nodes, not just relying on direct neighbors, and utilizes a para-
metrically embedded CTQW for weighted information aggregation.

Our main contributions are as follows:

– We utilize a novel approach to graph sampling that emphasizes the hop-based
selection of nodes, diverging from traditional methods that primarily con-
sider neighbors based on their layer-wise proximity. This strategy is designed
to capture and preserve the intricate local topological structures surrounding
a target node, which are often crucial for understanding the node’s role and
characteristics within the broader network.

– We employ Continuous-Time Quantum Walk (CTQW) on the subgraph to
obtain corresponding aggregation probabilities. Instead, we incorporate the
similarity of features between different nodes into the Hamiltonian. This in-
clusion significantly enhances the representation of node feature aggregation.

– A variational Quantum Circuit (VQC) is utilized to create parametric em-
bedding of node features. This strategic implementation allows for the weights,
which are generated through the CTQW process within the graph, to be
optimizable. It makes the weights not only dynamic but also learnable to
enhance the overall efficacy of the information aggregation process in the
graph.

The remaining paper is organized as follows. Section 2 presents related works.
Section 3 provides the overview of the proposed approach and detailed designs of
each component. Section 4 comprehensively evaluates the proposed approach and
compares the performance with the state-of-the-art baselines. Finally, section 5
concludes the paper.

CTQW-GraphSAGE 3

2 Related Work

2.1 Graph Neural Network

In recent years, graph neural networks (GNNs) [4] have emerged as a powerful
tool for processing and learning from graph-structured data. Previous approaches
using MLP-like [5, 6] networks focused primarily on feature information, ignoring
the characteristics of the graph structure itself. A significant leap was the devel-
opment of Graph Convolutional Networks (GCN) [7], which is simplified graph
convolutional using efficient layer-wise propagation rules based on adjacency and
degree matrices. This was followed by Graph Attention Networks (GAT and
GATII) [8, 9] that introduce an attention mechanism, assigning dynamic im-
portance to neighbors. The difference between spectral and spatial approaches
in GNNs further broadened the scope of the field. Spectral methods [10, 11]
leverage graph Laplacian’s eigenvalues for convolution, offering a mathematical
approach. On the other hand, GraphSAGE[12] directly aggregates neighbor fea-
tures, addressing scalability and enabling inductive learning on large graphs. The
challenge of heterogeneous and dynamic graphs led to the development of spe-
cialized models like Heterogeneous GNNs (HetGNNs) [13] and Dynamic GNNs
(DGCNNs) [14], catering to diverse node types and evolving graph structures.
The concept of Message Passing Neural Networks (MPNNs) [15] unified various
GNN architectures under a single framework, streamlining the understanding of
how GNNs update node features. Besides these, DeepWalk [16] utilizes random
walks on the graphs and treats each node visit in a walk as a word. For reduc-
ing the computational complexity, SGC [17] removes the non-linearities between
layers dan replaces multiple layers with a single line classifier.

The applicability of GNNs extends to various domains. For instance, in social
network analysis, GNNs are used for community detection and recommendation
systems. In bioinformatics, they assist in protein-protein interaction predictions,
and in computer vision, GNNs are applied in scene graph generation and object
detection.

2.2 Quantum Machine Learning

Simultaneously, Quantum Machine Learning (QML) as an emerging interdisci-
plinary field at the interaction of quantum computing and machine learning has
developed rapidly these years. Numerous machine learning algorithms have been
realized into quantum versions [18–20], offering acceleration for classical prob-
lems. Moreover, many scholars and researchers have harnessed the advantages
of quantum computing and integrated them with traditional neural networks,
constructing a variety of hybrid models for different domains.

The field of Quantum Machine Learning (QML) [21] has witnessed significant
growth and innovation over the past decade. Variational Quantum Eigensolvers
(VQEs) [22] has emerged as the fundamental quantum algorithm. Quantum
Support Vector Machines (QSVM) [23] aims to provide quantum speedup in
classification tasks as the analogs of classical support vector machines. Quantum

4 Yangjie Xu et al.

algorithms for feature selection, such as Quantum Principle Component Analysis
(QPCA) [24] aim to reduce dimensionality and improve the efficiency of classical
machine learning algorithms.

The fusion of quantum computing and machine learning techniques has ex-
tended to graph data, presenting novel solutions for graph-related problems.
Quantum Graph Neural Networks represent a significant development, combin-
ing the power of Quantum Computing and Graph Neural Networks (GNNs).
QGNNs aim to perform graph-based machine learning tasks, such as node clas-
sification, link prediction, and graph classification, with quantum-enhanced ca-
pabilities. Notably, Verdon et al. [25] pioneered the development of the Quan-
tum Graph Neural Network (QGNN), a quantum computing-based model for
graph classification. QGNN leverages a quadratic Hamiltonian to encode graph
structures and employs quantum circuits to extract pertinent structural details.
Though Peter et al. introduced the Equivalent Quantum Graph Circuit (EQGC)
[26]. EQGC excels at capturing permutation-invariant topologies of input graphs.
Its scalability is constrained, as the number of required qubits scales linearly
with the number of nodes, restricting its applicability to small-scale synthetic
datasets. A notable breakthrough in quantum graph algorithms is the Graph
Quantum Neural Tangent Kernel (GraphQNTK) [27], which stands as the sole
quantum algorithm capable of handling realistically sized graph data. For utiliz-
ing the advancement of quantum computing, ego-graph based Quantum Graph
Neural Network (egoQGNN) [28] greatly reduced the trainable parameters com-
pared the traditional GNNs.

In summary, within the domain of combining Graph Neural Networks (GNNs)
and Quantum Machine Learning (QML), numerous networks have achieved suc-
cess. However, many of these networks have not effectively harnessed the power
of Quantum Machine Learning to simultaneously leverage both feature informa-
tion and graph structure. This article introduces a novel approach that utilizes
Quantum Machine Learning for feature mapping and employs Quantum Ran-
dom Walks for probability computation. This innovative approach has demon-
strated excellent results in node classification tasks, showcasing the potential of
quantum-enhanced techniques in graph-based machine learning.

3 Methodology

3.1 Preliminaries

A graph G can be described using two matrices: an adjacency matrix A, where
A ∈ {0, 1}n×n, and a node feature matrix X, where X ∈ Rn×d. In these matrices,
n represents the total number of nodes, and d signifies the dimensionality of the
node features. Within the adjacency matrix A, an entry A[i, j] = 1 indicates the
presence of an edge between nodes vi and vj ; conversely, A[i, j] = 0 implies the
absence of an edge. Based on the definition of a graph, some additional notations
and explanations that are utilized in subsequent processes are presented in Table
1.

CTQW-GraphSAGE 5

Table 1: Notations and Functions
Symbols Definition or Meanings

k The maximum sampling hop

m The number of k-hop samples for the target node

Nm
k (v) A sampled nodes set of target node v

Xv Features sets of Nm
k (v)

ρv The feature mapping after parametric quantum embedding.

Pv Probablities of Nv after quantum walk

� Hadamard Product (element-wise product)

3.2 Framework

Before the theoretical foundation of the method, this subsection provides an
overall introduction to the entire network structure of the method we propose.
The architecture of the system is illustrated in Fig. 1.

𝑈(𝜃)

Aggregation

𝑝!
𝑝"

𝑝#𝑝$
𝑝%

𝑝&
𝑝'

CTQW

| ⟩𝜑

!𝑦
Softmax

Node Sample Adjacency and Features

MLP

MLP

VQC

sim

Hadamard Product

Fig. 1: The overall architecture of CTQW-GraphSAGE.

The whole process depicted begins with node sampling to extract a subgraph,
from which the adjacency and feature matrices are obtained. The features un-
dergo a hybrid quantum-classical transformation. The classical component con-
sists of a multilayer perceptron (MLP), which functions to reduce dimensional-
ity. In parallel, the quantum component comprises a variational quantum circuit
(VQC), which encodes classical data into a quantum state and performs a quan-
tum feature mapping through the circuit.

The mapped features are then used to calculate similarity measures, which
are combined with the sampled adjacency matrix through a Hadamard product.
This product result serves as a Hamiltonian operator to govern the time evo-
lution in a continuous-time quantum walk (CTQW), resulting in a probability

6 Yangjie Xu et al.

Algorithm 1 k-hop Nodes Sampling
Input: Graph: {G = (V,E), |V | = N}; Node Features X = {xv|∀v ∈ V }, sample
nodes: m; sample hops: k
Output: Adjacency Matrix Av and Features Matrix Xv of subgraphs.
1: Initialize node set Nm

k (v)
2: for i in range (1, k) do
3: Find the i-hop neighbours of node v in G, add these nodes to the temporary set

T (v)
4: end for
5: Select m nodes from T (v) and set them as Nm

k (v)
6: Generate adjacency matrix Av and features matrix Xv for Nm

k (v)
7: return Nm

k (v), Av, Xv

distribution. The probabilities represent the expectation of the walker landing
on each node within the subgraph.

Leveraging this probability distribution, feature aggregation is performed
for the target node. The process concludes with a classical MLP followed by a
softmax classifier, which collectively serves to classify the nodes based on the
aggregated features. The methodology shows a blend of classical machine learn-
ing techniques and quantum computing principles to enhance the analysis of
graph-structured data.

3.3 Detail Description

In this subsection, we focus on the critical aspects of the network, including node
sampling, the implementation of quantum mapping embedding with VQC, the
Continuous-Time Quantum Walk operating on the graph, and feature aggrega-
tion.

Sampling: Unlike the layer-wise random sampling in GraphSAGE, where
the number of neighbors for each layer and each target node is fixed to ensure
consistency and controllability at each layer, the proposed sampling method in-
volves sampling within different hops. The sampling process also retains neighbor
information among nodes other than the target node, trying to preserve local
structures and complexities. The corresponding adjacency matrix of these nodes
and their features are obtained through this sampling, as shown in the Algorithm
1.

The objective of sampling is to obtain a set of nodes from the Graph G(V,E)
which consists of vertices V and edges E for each target node v in the vertex set
V , the k-hop neighborhood is defined as follows:

Nm
k (v) = {u | d(v, u) ≤ k} (1)

where d(v, u) is the shortest path distance between nodes v and u. From this
k-hop neighborhood, a subset of Nm

k (v) m nodes is randomly selected.
The proposed sample algorithm implies that Nm

k (v) includes the target node
v, its immediate neighbors, and all other nodes that can be reached by traversing

CTQW-GraphSAGE 7

Algorithm 2 Trainable Continuous-Time Quantum Walk
Input: Adjacency matrices Av, Features matrices Xv and evolution time t
Parameter: Parameters of Variable Quantum Circuit and MLP θ, ωq.
Output: Probabilities
1: Initialize θ, ωp and set t
2: for each node v in V do
3: Initialize the quantum state ψ0 by setting the target node v state as |1〉 and

other nodes u states as |0〉
4: Features dimensions reduction by MLP: Xv 7→ X

′
v

5: Encode features to quantum state X
′
v 7→ |X

′
v〉

6: Feed the re-encoded features to VQC |X
′
v〉 7→ |ρv〉

7: Measure and get the output |ρv〉 7→ ρv
8: Calculate the similarity matrix Sv = sim(ρv)
9: Continuous-Time Quantum Walk evolution: |ψt〉 = e−iSv⊙Avt |ψ0〉

10: Calculate the probabilities vector Pv

11: end for
12: return all Pv

up to k edges. The k-hop sampling strategy is valuable for capturing a compre-
hensive local context around each node, as it not only considers the direct con-
nections (1-hop neighbors) but also includes nodes that are indirectly connected
within k steps. After the sampling, we treat the corresponding adjacency matri-
ces Av and features set Xv as the input of Trainable Continuous-Time Quantum
Walk which includes a variable quantum circuit (VQC) and an evolution oper-
ator.

Trainable Continuous-Time Quantum Walk: The Trainable Continuous-
Time Quantum Walk (T-CTQW) is composed of two parts. One is a hybrid
quantum-classical part which consists of an MLP and a variational quantum cir-
cuit. The other one is a Continuous-Time Quantum Walk (CTQW). The overall
illustration of a Trainable Continuous-Time Quantum Walk is presented in Al-
gorithm 2.

For each node v in the graph node set V , the quantum state |ψ0⟩ is prepared
in a way that the target node v is set |1⟩, and all other nodes u are set to
|0⟩. Feature reduction is then performed on the feature matrices Xv using an
MLP, effectively compressing the data before it is encoded into a quantum state.
The reduced features X ′

v undergo amplitude encoding, transforming them into
a quantum state |X ′

v⟩. These quantum-encoded features are fed into the VQC,
which processes them and generates an output quantum state mapping ρv, and
it is illustrated in Fig. 2.

For the specialized VQC, which is constructed using a combination of specific
quantum gates. These gates include Rx(Pauli-X rotation gate), Ry (Pauli-Y
rotation gate), and Rz (Pauli-Z rotation gate), which are each responsible for
rotating a qubit around their respective axes on the Bloch sphere. Additionally,
the circuit incorporates CNOT (Controlled NOT) gates, which are utilized for

8 Yangjie Xu et al.

R!

R!

R"

R"

R#

R$

R"

R"

R!

R!

R"

R"

R#

R$

R"

R"

Fig. 2: The VQC architecture.

creating entanglements between qubits, a fundamental characteristic of quantum
computing.

Each qubit initially passes through a sequence of parameterized rotation
gates and then proceeds through an entanglements section composed of several
Controlled-Not gate (CNOT), followed by an additional layer of rotation gates to
enhance expressivity. The VQC is represented as U(θ). Then the mapping process
can be described as |ρv⟩ = U(θ) |ρv⟩. After the measurement ρv = ⟨ρv|M |ρv⟩
where M represent the observation computation.

In a traditional CTQW, the walker’s evolution is governed by the system’s
Hamiltonian H, which is typically related to the adjacency matrix or Laplacian
matrix of the graph or lattice on which the walk is taking place. The state of
the walker |ψ⟩t at time t is given by the solution to the Schrödinger equation:

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩ (2)

Where the Hamiltonian is the adjacent matrix. Solving the Schrödinger equation
with ℏ = 1, we get the state of the quantum walker at time t:

|ψt⟩ = e−iHt |ψ0⟩ (3)

This work considers more than just the topological structure of the graph. We
aim to provide a richer, higher-dimensional representation that encompasses
both the graph’s topological information and the connections based on node
features. Therefore, the Hamiltonian operator is revised to be the Hadamard
product of the adjacency matrix and the feature similarity computed by the
output of the VQC.

H = sim(ρv)⊙Av. (4)
Equation 4 shows that the Hamiltonian matrix is constructed by first calcu-

lating the similarities between specific features mapping output by VQC. Then,
we mask these similarity matrices using the adjacency matrices to eliminate
expressions of similarity between nodes that are not connected.

To determine the probability of finding the quantum walker at a particular
node u which is one of the nodes in the subgraph based on the target node v at

CTQW-GraphSAGE 9

time t, we project the time-evolved state onto the basis state |u⟩ corresponding
to the node. The probability Pu(t) is calculated as the absolute square of the
amplitude:

Pu(t) = |⟨u |ψ(t)⟩ |2 (5)

This process is repeated for each node in the subgraph to obtain the complete
probability distribution across all nodes Pv.

In summary, the process of CTQW translates the classical information of a
graph, including the connectivities between nodes and their features, into weights
used for the aggregation of graph features. This transformation effectively cap-
tures the structure and attributes of the graph within a quantum framework,
facilitating computations that leverage quantum properties such as superposi-
tion and entanglement. The specific mathematical expression of this process can
be detailed as follows:

In practical terms, the sum of the probabilities for all nodes should be equal
to 1, ∑

u

Pu(t) = 1, u ∈ Nm
k (v), (6)

reflecting the normalization condition and ensuring that the quantum walk de-
scribes a complete and physically possible quantum system.

This rule is not only a fundamental principle of quantum mechanics but also a
key condition that must be adhered to when designing and interpreting quantum
algorithms in quantum computing. In practical quantum computing applications,
ensuring the normalization of quantum states is crucial, as it guarantees the
correctness and reliability of quantum computational results.

Feature Aggregation: In the feature aggregation part, we leverage the
probabilities derived from continuous quantum random walks to present a novel
approach to synthesizing enriched node representations in graphs. This aggrega-
tion method takes into account not only the direct connections of nodes or the
topological structure of the graph but also fully integrates the interconnections
among features

hlv = σ(W (·{hl−1
v }∪{WeightedMean(hl−1

u , Pu)}))
(∀u ∈ Nm

k (u), u ̸= v)
(7)

The equation describes the process of updating the hidden state of node v
at layer l in the neural network. The hidden state hlv is computed as a function
of the node’s previous layer state hl−1

v and the weighted features of its neigh-
boring nodes. The activation function σ introduces nonlinearity. W represents
the weight matrix for the linear transformation of node features. The sum is
taken over all neighboring nodes u of v, where each neighbor’s contribution to
the new feature representation is weighted by the probability Pu, derived from
processes like quantum random walks. This formulation captures both the direct
connections of the nodes and the topological structure of the graph, integrat-
ing the relationships among features for a richer representation. In addressing

10 Yangjie Xu et al.

the node classification task, after the described feature aggregation process, we
implement a conventional post-processing methodology. This involves the use
of a multilayer perceptron integrated with a softmax function to categorize the
nodes.

4 Experiments

This section presents the evaluation results of the proposed CTQW-GraphSAGE
on various datasets and compares them against the state-of-the-art baselines.

4.1 Datasets

Six datasets, Cora, PubMed, Citeseer, Wisconsin, Texas, and Cornell, are chosen
to evaluate the proposed approach. Table 2 contains detailed statistical informa-
tion about these datasets, and a brief introduction about each dataset is provided
below.

Table 2: Datasets Details
Dataset # Nodes # Edges # Features # Labels

Cora 2708 5429 1433 7

Pubmed 19717 44388 500 3

Citeseer 3327 4732 3703 6

Wisconsin 251 499 1703 5

Texas 183 309 1703 5

Cornell 183 295 1703 5

Cora: This is a citation network dataset where nodes represent scientific
papers, and edges represent citations between these papers. The papers are clas-
sified into different classes based on their topics, such as Machine Learning,
Neural Networks, etc. Each paper (node) is described by a binary word vector
indicating the absence/presence of the corresponding word from the dictionary.

PubMed: Similar to Cora, the PubMed dataset is also a citation network
but focuses on diabetes-related publications from the PubMed database. Each
paper in the dataset is described by a TF/IDF weighted word vector from a
dictionary. The papers are categorized into three classes based on the type of
diabetes they discuss.

Citeseer: This is another citation network where nodes represent publica-
tions and edges represent citations. Like Cora, each document is associated with
a word vector indicating the presence of words from a dictionary. The papers
are categorized into different classes based on their research topics.

CTQW-GraphSAGE 11

Wisconsin, Texas, and Cornell: These three datasets are part of the
WebKB dataset collection and consist of web pages from computer science de-
partments of various universities, categorized into classes like faculty, student,
project, etc. Each webpage is described by a word vector similar to the Cora and
Citeseer datasets. The datasets represent a network where edges are hyperlinks
between these web pages.

Table 3: Performance for the node classification task on six datasets (mean ac-
curacy(%) and standard deviation over 10 trials), In each dataset, the best per-
formance is highlighted in bold, while the second-best is underlined.

Methods Cora Citeseer Pumbed Cornell Wisconsin Texas

DeepWalk 82.32±0.72 60.78±1.11 61.25±1.30 50.81±5.37 50.39±5.48 47.57±3.01

Graph-based Method (2-layers)

GCN 87.39±0.27 76.5±0.42 87.24±0.25 58.65±2.1 44.22±1.2 44.59±1.36

GAT 87.08±0.48 77.54±0.40 87.28±0.28 59.73±1.89 46.86±3.33 50.27±2.16

GraphSAGE-mean 87.50±0.31 77.21±0.42 87.45±0.41 75.96±3.5 72.94±1.92 71.81±2.36

GraphSAGE-pool 86.71±0.55 75.60±0.54 86.68±0.38 71.89±2.76 69.22±3.40 68.91±2.18

CTQW-GraphSAGE 87.89±0.95 78.04±0.28 88.60±2.58 73.64±3.08 74.35±2.40 70.84±3.85

Graph-based Method (1-layer)

SGC 84.20±0.27 77.04±0.17 85.20±0.45 60.00±1.08 45.29±0.59 51.89±1.08

GCN 85.45±0.52 77.32±0.28 86.64±0.40 61.08±1.79 45.29±0.59 49.46±1.73

GAT 84.23±0.72 77.66±0.31 85.18±0.49 63.51±3.25 47.84±3.19 53.24±2.72

GraphSAGE-mean 83.93±0.26 77.30±0.18 84.89±0.31 77.29±2.16 72.75±1.84 70.54±0.81

GraphSAGE-pool 83.02±0.40 77.74±0.26 84.15±0.49 73.24±2.25 65.50±1.80 67.57±2.09

CTQW-GraphSAGE 85.47±0.35 76.78±0.90 86.93±0.86 73.47±3.40 69.68±2.81 69.78±2.12

4.2 Baselines

To evaluate the performance of our model on different datasets, we implement
several state-of-the-art models, including Simplifying Graph Convolutional Net-
works (SGC), DeepWalk, Graph Convolutional Networks (GCN), Graph Atten-
tion Networks (GAT), and GraphSAGE with pooling and mean aggregation, and
compare their performance on the above datasets with our proposed approach.

4.3 Experiments set-up

We assess and compare our model based on the accuracy achieved in node clas-
sification tasks. To ensure fairness and credibility, we conduct ten trials for each
model on every dataset and the accuracy report is based on the average ac-
curacy. For each trial, we run the model 100 epochs. For the neural networks
method, we use Adam optimizer. The setting of the hyperparameters: dropout
at 0.6, learning rate at 0.001, weight decay = 5e−4, the hidden dimension within
{32, 64, 128}. Especially for the DeepWalk method, the number of walks is 10,
the window size is within 5, the embedding size is 128 and the walk length is

12 Yangjie Xu et al.

15 10 5 0 5 10 15

15

10

5

0

5

10

15 Class 0
Class 1
Class 2
Class 3
Class 4

(a) SGC

10 5 0 5 10 15

15

10

5

0

5

10

15
Class 0
Class 1
Class 2
Class 3
Class 4

(b) GAT

15 10 5 0 5 10 15

15

10

5

0

5

10
Class 0
Class 1
Class 2
Class 3
Class 4

(c) GCN

10 5 0 5 10 15 20

15

10

5

0

5

10

15 Class 0
Class 1
Class 2
Class 3
Class 4

(d) GraphSAGE-Mean

10 5 0 5 10

20

10

0

10

20
Class 0
Class 1
Class 2
Class 3
Class 4

(e) GraphSAFE-Pool

15 10 5 0 5 10 15

15

10

5

0

5

10

15
Class 0
Class 1
Class 2
Class 3
Class 4

(f) CTQW

Fig. 3: t-SNE of various networks on the Wisconsin dataset, with subfigures from
(a) to (f) representing SGC, GAT, GCN, GraphSAGE with mean aggregation,
GraphSAGE with pool aggregation, and our CTQW-GraphSAGE, respectively
(2-layer versions for graph-based models).

80. For the proposed method, the number of node samples in the first layer
is set to {20, 15}, and in the second layer, it is {10, 5}. The implementation
environment includes python (3.8), torch (2.0.1), torch-geometric (2.4)[29], and
Paddle-Quantum (2.4.0)[30]. In our study, all experiments are conducted on a
Unix device equipped with a Radeon Pro 5500M GPU. We conducted compara-
tive experiments for different neural network architectures by implementing both
1-layer and 2-layer variants. This approach allows us to evaluate the impact of
network depth on the model’s performance.

4.4 Performance

Table 3 comprehensively demonstrates the performance of various networks
across multiple datasets, where we implement experiments with both 1-layer and
2-layer configurations for graph-based networks. Notably, our method achieved
the best results in most of the selected datasets, such as Cora, Citeseer, Pubmed,
and Wisconsin, and the second-best in the Texas dataset, while performing at
an average level on the Cornell dataset compared to other graph-based methods.
Both 1-layer and 2-layer networks effectively handled node classification tasks.
In terms of stability, compared to DeepWalk, GCN, GAT, and SGC methods,

CTQW-GraphSAGE 13

our approach and GraphSAGE adapted well to different datasets for node clas-
sification. For instance, as shown in Fig. 3, the t-SNE visualization of the final
embeddings of trained networks on the Wisconsin dataset, SGC, GAT, and GCN
does not classify the dataset effectively, whereas CTQW and GraphSAGE dis-
tinctly differentiated between different nodes.

5 Conclusion

In this work, we introduce a novel hybrid network called CTQW-GraphSAG.
This network utilizes a parameterized variational quantum circuit for node fea-
ture mapping, followed by computing the similarity between these mappings.
We then construct a Hamiltonian using the Hadamard product of the similarity
matrix and the adjacency matrix to facilitate the evolution of continuous quan-
tum walks. The resulting probabilities of the walker residing on the nodes are
used for weighted aggregation. This approach not only leverages the structural
information of the graph but also considers the node feature information in the
quantum space. Additionally, in our node sampling process, we take into account
the k-hop neighbors of the target node, focusing on preserving the complex in-
formation about the target node. This method has also achieved comparable
performance to current mainstream graph neural networks in node classification
tasks. However, as the quantum part of our method is simulated on classical
computers using quantum platforms, it incurs a relatively high time cost for
training. In the future, we hope to utilize real quantum devices and more effi-
cient computational methods for acceleration.

References

1. Y. Li, Y. Ji, S. Li, S. He, Y. Cao, Y. Liu, H. Liu, X. Li, J. Shi, and Y. Yang,
“Relevance-aware anomalous users detection in social network via graph neural
network,” in 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

2. H. Zhang, Z. Feng, and C. Wu, “A non-local graph neural network for identification
of essential proteins,” in 2022 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2022, pp. 1–8.

3. C. Ren, L. Zhang, L. Fang, T. Xu, Z. Wang, S. Yuan, and E. Chen, “Ontological
concept structure aware knowledge transfer for inductive knowledge graph em-
bedding,” in 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

4. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” AI open, vol. 1,
pp. 57–81, 2020.

5. H. Taud and J. Mas, “Multilayer perceptron (mlp),” Geomatic approaches for
modeling land change scenarios, pp. 451–455, 2018.

6. Y. Hu, H. You, Z. Wang, Z. Wang, E. Zhou, and Y. Gao, “Graph-mlp: Node
classification without message passing in graph,” arXiv preprint arXiv:2106.04051,
2021.

14 Yangjie Xu et al.

7. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

8. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

9. S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?”
arXiv preprint arXiv:2105.14491, 2021.

10. Y. Ma, J. Hao, Y. Yang, H. Li, J. Jin, and G. Chen, “Spectral-based graph convo-
lutional network for directed graphs,” arXiv preprint arXiv:1907.08990, 2019.

11. A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang, “Spectral–spatial
graph convolutional networks for semisupervised hyperspectral image classifica-
tion,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 2, pp. 241–245,
2018.

12. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” Advances in neural information processing systems, vol. 30, 2017.

13. C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph
neural network,” in Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, 2019, pp. 793–803.

14. F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional networks,”
Pattern Recognition, vol. 97, p. 107000, 2020.

15. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Message
passing neural networks,” Machine learning meets quantum physics, pp. 199–214,
2020.

16. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 701–710.

17. F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying
graph convolutional networks,” in International conference on machine learning.
PMLR, 2019, pp. 6861–6871.

18. D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum reinforcement learning,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38,
no. 5, pp. 1207–1220, 2008.

19. P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial net-
works,” Physical Review A, vol. 98, no. 1, p. 012324, 2018.

20. M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional neural net-
works: powering image recognition with quantum circuits,” Quantum Machine In-
telligence, vol. 2, no. 1, p. 2, 2020.

21. M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine
learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185, 2015.

22. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rung-
ger, G. H. Booth et al., “The variational quantum eigensolver: a review of methods
and best practices,” Physics Reports, vol. 986, pp. 1–128, 2022.

23. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for
big data classification,” Physical review letters, vol. 113, no. 13, p. 130503, 2014.

24. S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analy-
sis,” Nature Physics, vol. 10, no. 9, pp. 631–633, 2014.

25. G. Verdon, T. McCourt, E. Luzhnica, V. Singh, S. Leichenauer, and J. Hidary,
“Quantum graph neural networks,” arXiv preprint arXiv:1909.12264, 2019.

26. P. Mernyei, K. Meichanetzidis, and I. I. Ceylan, “Equivariant quantum graph
circuits,” in International Conference on Machine Learning. PMLR, 2022, pp.
15 401–15 420.

CTQW-GraphSAGE 15

27. Y. Tang and J. Yan, “Graphqntk: Quantum neural tangent kernel for graph data,”
Advances in Neural Information Processing Systems, vol. 35, pp. 6104–6118, 2022.

28. X. Ai, Z. Zhang, L. Sun, J. Yan, and E. Hancock, “Decompositional quantum graph
neural network,” arXiv preprint arXiv:2201.05158, 2022.

29. M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geo-
metric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

30. “Paddle quantum,” 2020. [Online]. Available: https://github.com/PaddlePaddle/
Quantum

