model selection, conceptual hydrological models, dynamical systems, prior impact
Résumé :
[en] There are many models for prediction. These models differ in the number of parameters and therefore scientists are faced with the problem of model selection. Model selection techniques seek a simple model with similar accuracy to complex models for in-sample data. While the Bayesian approach to parameter estimation is frequently used, fully Bayesian model selection is seldom used because of the high computational cost of computing the marginal likelihood, a key component of Bayesian model selection. This thesis introduces a gradient-based algorithm, Replica exchange Hamiltonian Monte Carlo (REHMC), which accurately computes the marginal likelihood when used with thermodynamic integration (TI). It also examines the often-overlooked impact of prior choices in Bayesian analysis on model outcomes, especially in Ordinary differential equation (ODE)
models. The thesis extends prior impact assessment to models with more than two parameters using algorithms from computational optimal transport. It introduces a new interpretable prior impact measure based on the Wasserstein Impact Measure (WIM). Power posteriors are used to provide insights into the transitions from prior to posterior
distributions. The source codes are made publicly available to encourage their adoption.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres Mathématiques Sciences de la terre & géographie physique
Auteur, co-auteur :
MINGO NDIWAGO, Damian ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Jack HALE
Langue du document :
Anglais
Titre :
BAYESIAN MODEL SELECTION AND PRIOR IMPACT ASSESSMENT WITH A FOCUS ON DYNAMICAL SYSTEMS
Date de soutenance :
26 septembre 2024
Nombre de pages :
162
Institution :
Unilu - University of Luxembourg
Intitulé du diplôme :
Docteur en Sciences de l'Ingénieur (DIP_DOC_0005_B)
Promoteur :
HALE, Jack ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Président du jury :
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Membre du jury :
KEMP, Francoise ; University of Luxembourg ; Chambre des députes du Grand-Duché de Luxembourg
Ghaderinezhad, Fatemeh; TVH Parts NV
Linde, Niklas; UNIL - University of Lausanne
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
15. Vie terrestre
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Organisme subsidiant :
FNR - Fonds National de la Recherche
Subventionnement (détails) :
This work was funded under the Luxembourg National Research Fund under the PRIDE programme PRIDE17/12252781.