[en] The surface adhesion and stiffness of underlying substrates mediate the geometry, mechanics, and self-organization of expanding bacterial colonies. Recent studies have qualitatively indicted that stiffness may impact bacterial attachment and accumulation, yet the variation in the cell-to-surface adhesion with substrate stiffness remains to be quantified. Here, by developing a cell-level force–distance spectroscopy (FDS) technique based on atomic force microscopy (AFM), we simultaneously quantify the cell–surface adhesion and stiffness of the underlying substrates to reveal the stiffness-dependent adhesion of the phototrophic bacterium Chromatium okenii. As the stiffness of the soft substrate, modeled using a low-melting-point (LMP) agarose pad, was varied between 20 kPa and 120 kPa by changing the agarose concentrations, we observed a progressive increase in the mean adhesion force by over an order of magnitude, from 0.21±0.10 nN to 2.42±1.16 nN. In contrast, passive polystyrene (PS) microparticles of comparable dimensions showed no perceptible change in their surface adhesion, confirming that the stiffness-dependent adhesive interaction of C. okenii is of a biological origin. Furthermore, for Escherichia coli, the cell–surface adhesion varied between 0.29±0.17 nN and 0.39±0.20 nN, showing a weak dependence on the substrate stiffness, thus suggesting that stiffness-modulated adhesion is a species-specific trait. Finally, by quantifying the adhesion of the C. okenii population across different timescales, we reported the emergent co-existence of weak and strongly adherent sub-populations, demonstrating diversification of the adherent phenotypes over the growth stages. Taken together, these findings suggest that bacteria, depending on the species and their physiological stage, may actively modulate cell-to-surface adhesion in response to the stiffness of soft surfaces. While the surface properties, for instance, hydrophobicity (or hydrophilicity), play a key role in mediating bacterial attachment, this work introduces substrate stiffness as a biophysical parameter that could reinforce or suppress effective surface interactions. Our results suggest how bacteria could leverage stiffness-dependent adhesion and the diversity therein as functional traits to modulate their initial attachment to, colonization of, and proliferation on soft substrates during the early stages of biofilm development.
Disciplines :
Microbiology
Author, co-author :
Riedel, René; Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
RANI, Garima ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Anupam SENGUPTA
R-AGR-3401 - A17/MS/11572821/MBRACE - part UL - SENGUPTA Anupam R-AGR-3692 - C19/MS/13719464/TOPOFLUME - SENGUPTA Anupam
Funders :
The Institute for Advanced Studies, the University of Luxembourg Luxembourg National Research Fund’s ATTRACT Investigator Grant CORE Grant Human Frontier Science Program Cross-Disciplinary Fellowship
Funding number :
AUDACITY Grant: IAS-20/CAMEOS; ATTRACT Investigator Grant: A17/MS/ 11572821/MBRACE; FNR CORE Grant: C19/MS/13719464/TOPOFLUME/Sengupta; Human Frontier Science Program Cross-Disciplinary Fellowship (LT 00230/2021-C)
Funding text :
The Institute for Advanced Studies, the University of Luxembourg (AUDACITY Grant: IAS-20/CAMEOS); Luxembourg National Research Fund’s ATTRACT Investigator Grant (A17/MS/ 11572821/MBRACE) and the CORE Grant (C19/MS/13719464/TOPOFLUME/Sengupta); and a Human Frontier Science Program Cross-Disciplinary Fellowship (LT 00230/2021-C)
Guimaraes C.F. Gasperini L. Marques A.P. Reis R.L. The stiffness of living tissues and its implications for tissue engineering Nat. Rev. Mater. 2020 5 351 10.1038/s41578-019-0169-1
Serrano-Aroca A. Cano-Vicent A. Serra R.S. El-Tanani M. Aljabali A. Tambuwala M.M. Mishra Y.K. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications Mater. Today Bio 2022 16 100412 10.1016/j.mtbio.2022.100412
Dufrêne Y.F. Persat A. Mechanomicrobiology: How bacteria sense and respond to forces Nat. Rev. Microbiol. 2020 18 227 10.1038/s41579-019-0314-2
Maier B. How physical interactions shape bacterial biofilms Annu. Rev. Biophys. 2021 50 401 10.1146/annurev-biophys-062920-063646
Wang L. Wong Y.-C. Correira J.M. Wancura M. Geiger C.J. Webster S.S. Butler B.J. O’Toole G.A. Langford R.M. Brown K.A. et al. The accumulation and growth of Pseudomonas aeruginosa on surfaces is modulated by surface mechanics via cyclic-di-GMP signaling NPJ Biofilms Microbiomes 2023 9 78 10.1038/s41522-023-00436-x 37816780
Wittmann R. Nguyen G.H. Löwen H. Schwarzendahl F.J. Sengupta A. Mechano-self-regulation of bacterial size in growing colonies Commun. Phys. 2023 6 10.1038/s42005-023-01449-w
Otto K. Silhavy T.J. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway Proc. Natl Acad. Sci. USA 2002 99 2287 2292 10.1073/pnas.042521699
Ellison C.K. Kan J. Dillard R.S. Kysela D.T. Ducret A. Berne C. Hampton C.M. Ke Z. Wright E.R. Biais N. et al. Obstruction of pilus retraction stimulates bacterial surface sensing Science 2017 358 535 538 10.1126/science.aan5706
Hug I. Deshpande S. Sprecher K.S. Pfohl T. Jenal U. Second messenger–mediated tactile response by a bacterial rotary motor Science 2017 358 531 534 10.1126/science.aan5353
Berne C. Ellison C.K. Ducret A. Brun Y.V. Bacterial adhesion at the single-cell level Nat. Rev. Microbiol. 2018 16 616 10.1038/s41579-018-0057-5
Vadillo-Rodriguez V. Busscher H.J. Mei H.C.V. de Vries J. Norde W. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength Colloids Surf. Biointerf. 2005 41 33 41 10.1016/j.colsurfb.2004.10.028 15698754
Bayoudh S. Othmane A. Bettaieb F. Bakhrouf A. Ouada H.B. Ponsonnet L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata Mater. Sci. Eng. C 2006 26 300 305 10.1016/j.msec.2005.10.045
Yuan Y. Hays M.P. Hardwidge P.R. Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates RSC Adv. 2017 7 14254 14261 10.1039/C7RA01571B
Kandemir N. Vollmer W. Jakubovics N.S. Chen J. Mechanical interactions between bacteria and hydrogels Sci. Rep. 2018 8 10893 10.1038/s41598-018-29269-x
Yang K. Shi J. Wang L. Chen Y. Liang C. Yang L. Wang L.N. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review J. Mater. Sci. Technol. 2022 99 82 100 10.1016/j.jmst.2021.05.028
Carniello V. Peterson B.W. Mei H.C.V. Busscher H.J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth Adv. Colloid Interf. Sci. 2019 261 1 10.1016/j.cis.2018.10.005
Zhang X. Zhou X. Xi H. Sun J. Liang X. Wei J. Xiao X. Liu Z. Li S. Liang Z. et al. Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory Colloids Surf. B Biointerf. 2019 177 454 461 10.1016/j.colsurfb.2019.02.035
Asp M.E. Ho Thanh M.-T. Germann D.A. Carroll R.J. Franceski A. Welch R.D. Gopinath A. Patteson A.E. Spreading rates of bacterial colonies depend on substrate stiffness and permeability PNAS Nexus 2022 1 pgac025 10.1093/pnasnexus/pgac025
Pal A. Gope A. Sengupta A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives Adv. Colloid Interface Sci. 2023 314 102870 10.1016/j.cis.2023.102870
Pal A. Sengupta A. Yanagisawa M. Role of motility and nutrient availability in drying patterns of algal droplets Sci. Rep. 2024 14 23481 10.1038/s41598-024-73836-4
Guégan C. Garderes J. Le Pennec G. Gaillard F. Fay F. Linossier I. Herry J.-M. Fontaine M.-N.B. Réhel K.V. Alteration of bacterial adhesion induced by the substrate stiffness Colloids Surfaces Biointerfaces 2014 114 193 10.1016/j.colsurfb.2013.10.010
Song F. Ren D. Stiffness of cross-linked poly(dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells Langmuir 2014 30 10354 10.1021/la502029f 25117376
Straub H. Bigger C.M. Valentin J. Abt D. Qin X.-H. Eberl L. Maniura-Weber K. Ren Q. Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing? Adv. Healthc. Mater. 2019 8 1801323 10.1002/adhm.201801323 30773835
Bawazir M. Dhall A. Lee J. Kim B. Hwang G. Effect of surface stiffness in initial adhesion of oral microorganisms under various environmental conditions Colloids Surf. Biointerfaces 2023 221 112952 10.1016/j.colsurfb.2022.112952
Lichter J.A. Thompson M.T. Delgadillo M. Nishikawa T. Rubner M.F. Van Vliet K.J. Substrata mechanical stiffness can regulate adhesion of viable bacteria Biomacromolecules 2008 9 1571 10.1021/bm8009335
Wilms D. Schröer F. Paul T. Schmidt S. Switchable adhesion of E. coli to thermosensitive carbohydrate presenting microgel layers: A single cell force spectroscopy study Langmuir 2020 36 12555 10.1021/acs.langmuir.0c02040 32975417
Kolewe K.W. Zhu J. Mako N.R. Nonnenmann S.S. Schiffman J.D. Bacterial adhesion is affected by the thickness and stiffness of poly(ethylene glycol) hydrogels ACS Appl. Mater. Interfaces 2018 10 2275 10.1021/acsami.7b12145
Lahaye M. Rochas C. Chemical structure and physico-chemical properties of agar Hydrobiologia 1991 221 137 10.1007/BF00028370
Bertasa M. Dodero A. Alloisio M. Vicini S. Riedo C. Sansonetti A. Scalarone D. Castellano M. Agar gel strength: A correlation study between chemical composition and rheological properties Eur. Polym. J. 2020 123 109442 10.1016/j.eurpolymj.2019.109442
You Z. Pearce D.J.G. Sengupta A. Giomi L. Geometry and mechanics of microdomains in growing bacterial colonies Phys. Rev. X 2018 8 031065 10.1103/PhysRevX.8.031065
You Z. Pearce D.J. Sengupta A. Giomi L. Mono-to multilayer transition in growing bacterial colonies Phys. Rev. Lett. 2019 123 178001 10.1103/PhysRevLett.123.178001 31702266
Nandhakumar S. Parasuraman S. Shanmugam M.M. Rao K.R. Chand P. Bhat B.V. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay) J. Pharmacol. Pharmacother. 2011 2 107
Guarrotxena N. Braun G. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis J. Nanoparticle Res. 2012 14 1199 10.1007/s11051-012-1199-4
Corral J.R. Mitrani H. Dade-Robertson M. Zhang M. Maiello P. Agarose gel as a soil analogue for development of advanced bio-mediated soil improvement methods Can. Geotech. J. 2020 57 2010 10.1139/cgj-2019-0496
Sambrook J. Fritsch E.F. Maniatis T. Molecular Cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, USA 1989
Kim J.S. Chowdhury N. Yamasaki R. Wood T.K. Viable but non-culturable and persistence describe the same bacterial stress state Environ. Microbiol. 2018 20 2038 10.1111/1462-2920.14075
Lewis D.D. Gong T. Xu Y. Tan C. Frequency dependent growth of bacteria in living materials Front. Bioeng. Biotechnol. 2022 10 948483 10.3389/fbioe.2022.948483
Raghunath J. Rollo J. Sales K.M. Butler P.E. Seifalian A.M. Biomaterials and scaffold design: Key to tissue-engineering cartilage Biotechnol. Appl. Biochem. 2007 46 73 10.1042/BA20060134
Dong Y. Li S. Li X. Wang X. Smart MXene/agarose hydrogel with photothermal property for controlled drug release Int. J. Biol. Macromol. 2021 190 693 10.1016/j.ijbiomac.2021.09.037
Yazdi M.K. Taghizadeh A. Taghizadeh M. Stadler F.J. Farokhi M. Mottaghitalab F. Zarrintaj P. Ramsey J.D. Seidi F. Saeb M.R. et al. Agarose-based biomaterials for advanced drug delivery J. Control. Release 2020 326 523 10.1016/j.jconrel.2020.07.028
Torabi S. Li L. Grabau J. Sands M. Berron B.J. Xu R. Trinkle C.A. Cassie–Baxter Surfaces for Reversible, Barrier-Free Integration of Microfluidics and 3D Cell Culture Langmuir 2019 35 10299 10.1021/acs.langmuir.9b01163
Sengupta A. Microbial Active Matter: A Topological Framework Front. Phys. 2020 8 184 10.3389/fphy.2020.00184
Jin C. Sengupta A. Microbes in porous environments: From active interactions to emergent feedback Biophys. Rev. 2024 16 173 188 10.1007/s12551-024-01185-7 38737203
Rani G. Sengupta A. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy Biophys. Rep. 2024 4 100175 10.1016/j.bpr.2024.100175
Roberts J.J. Earnshaw A. Ferguson V.L. Bryant S.J. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels J. Biomed. Mater. Res. Part Appl. Biomater. 2011 99B 158 10.1002/jbm.b.31883 21714081
Normand V. Lootens D.L. Amici E. Plucknett K.P. Aymard P. New Insight into Agarose Gel Mechanical Properties Biomacromolecules 2000 1 730 10.1021/bm005583j
Watase M. Nishinari K. Rheological properties of agarose gels with different molecular weights Rheol. Acta 1983 22 580 10.1007/BF01351404
Kreve S. Reis A.C.D. Bacterial adhesion to biomaterials: What regulates this attachment? A review Jpn. Dent. Sci. Rev. 2021 57 85 10.1016/j.jdsr.2021.05.003
Araújo N.A. Janssen L.M. Barois T. Boffetta G. Cohen I. Corbetta A. Dauchot O. Dijkstra M. Durham W.M. Dussutour A. et al. Steering self-organisation through confinement Soft Matter 2023 9 1695 10.1039/D2SM01562E
Genova L.A. Roberts M.F. Wong Y.C. Harper C.E. Santiago A.G. Fu B. Srivastava A. Jung W. Wang L.M. Krzemiński Ł. et al. Mechanical stress compromises multicomponent efflux complexes in bacteria Proc. Natl. Acad. Sci. USA 2019 116 25462 10.1073/pnas.1909562116
Dhar J. Thai A. Ghoshal A. Giomi L. Sengupta A. Self-regulation of phenotypic noise synchronizes emergent organization and active transport in confluent microbial environments Nat. Phys. 2022 18 945 10.1038/s41567-022-01641-9
Gammoudi I. Mathelie-Guinlet M. Morote F. Beven L. Moynet D. Grauby-Heywang C. Cohen-Bouhacina T. Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy Colloids Surfaces Biointerfaces 2016 141 355 364 10.1016/j.colsurfb.2016.02.006 26878286
Maikranz E. Spengler C. Thewes N. Thewes A. Nolle F. Jung P. Bischoff M. Santen L. Jacobs K. Different binding mechanisms of Staphylococcus aureus to hydrophobic and hydrophilic surfaces Nanoscale 2020 12 19267 10.1039/D0NR03134H
Hertz H. Ueber die Berührung fester elastischer Körper J. Reine Und Angew. Math. 1882 1882 156 10.1515/crll.1882.92.156
Derjaguin B.V. Muller V.M. Toporov Y.P. Effect of contact deformations on the adhesion of particles J. Colloid Interface Sci. 1975 53 314 10.1016/0021-9797(75)90018-1
Johnson K.L. Kendall K. Roberts A. Surface energy and the contact of elastic solids Proc. R. Soc. Lond. Math. Phys. Sci. 1971 324 301
Lin D.C. Dimitriadis E.K. Horkay F. Robust Strategies for Automated AFM Force Curve Analysis—II: Adhesion-Influenced Indentation of Soft, Elastic Materials J. Biomech. Eng. 2007 129 904 10.1115/1.2800826
Sommer T. Danza F. Berg J. Sengupta A. Constantinescu G. Tokyay T. Bürgmann H. Dressler Y. Sepulveda Steiner O. Schubert C.J. et al. Bacteria-induced mixing in natural waters Geophys. Res. Lett. 2017 44 9424 10.1002/2017GL074868
Berg J.S. Pjevac P. Sommer T. Buckner C.R. Philippi M. Hach P.F. Liebeke M. Holtappels M. Danza F. Tonolla M. et al. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters Environ. Microbiol. 2019 21 1611 10.1111/1462-2920.14543
Di Nezio F. Roman S. Buetti-Dinh A. Sepúlveda Steiner O. Bouffard D. Sengupta A. Storelli N. Motile bacteria leverage bioconvection for eco-physiological benefits in a natural aquatic environment Front. Microbiol. 2023 14 1253009 10.3389/fmicb.2023.1253009
Di Nezio F. Ong I.L.H. Riedel R. Goshal A. Dhar J. Roman S. Storelli N. Sengupta A. Synergistic phenotypic adaptations of motile purple sulphur bacteria Chromatium okenii during lake-to-laboratory domestication PLoS ONE 2023 19 e0310265 10.1371/journal.pone.0310265 39436933
Cox T.R. Erler J.T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer Dis. Model. Mech. 2011 4 165 10.1242/dmm.004077 21324931
Sachot N. Engel E. Castaño O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies Curr. Org. Chem. 2023 18 2299 10.2174/1385272819666140806200355
Arnott S. Fulmer A.S.W.E. Scott W.E. Dea I.C.M. Moorhouse R. Rees D.A. The agarose double helix and its function in agarose gel structure J. Mol. Biol. 1974 90 269 10.1016/0022-2836(74)90372-6
Jiang F. Xu X.-W. Chen F.-Q. Weng H.-F. Chen J. Ru Y. Xiao Q. Xiao A.-F. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review Mar. Drugs 2023 21 299 10.3390/md21050299 37233493
Serwer P. Agarose gels: Properties and use for electrophoresis Electrophoresis 1983 4 375 10.1002/elps.1150040602
Nijenhuis K.T. Thermoreversible networks: Viscoelastic properties and structure of gels Adv. Polym. Sci. 1997 130 169
Guenet J.-M. Rochas C. Agarose sols and gels revisited Macromolecular Symposia Wiley Online Library Hoboken, NJ, USA 2006 Volume 242 65 70
Fernández E. López D. Mijangos C. Duskova-Smrckova M. Ilavsky M. Dusek K. Rheological and thermal properties of agarose aqueous solutions and hydrogels J. Polym. Sci. Part Polym. Phys. 2008 46 322 10.1002/polb.21370
Mao B. Dynamics of agar-based gels in contact with solid surfaces: Gelation Adhesion, Drying and Formulation Université de Bordeaux Bordeaux, France 2017
Kontomaris S.V. Stylianou A. Georgakopoulos A. Malamou A. 3D AFM Nanomechanical Characterization of Biological Materials Nanomaterials 2023 13 395 10.3390/nano13030395
Topuz F. Nadernezhad A. Caliskan O.S. Menceloglu Y.Z. Koc B. Nanosilicate embedded agarose hydrogels with improved bioactivity Carbohydr. Polym. 2018 201 105 10.1016/j.carbpol.2018.08.032
Zamora-Mora V. Velasco D. Hernández R. Mijangos C. Kumacheva E. Chitosan/agarose hydrogels: Cooperative properties and microfluidic preparation Carbohydr. Polym. 2014 111 348 10.1016/j.carbpol.2014.04.087 25037360
Kumachev A. Greener J. Tumarkin E. Eiser E. Zandstra P.W. Kumacheva E. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation Biomaterials 2011 32 1477 10.1016/j.biomaterials.2010.10.033 21095000
van Oss C.J. Interfacial Forces in Aqueous Media CRC Press Boca Raton, FL, USA 1994
Sengupta A. Planktonic Active Matter arXiv 2023 2301.09550
Ji D. Kim J. Recent strategies for strengthening and stiffening tough hydrogels Adv. Nanobiomed. Res. 2021 1 2100026 10.1002/anbr.202100026
Thio B.J.R. Meredith J.C. Quantification of E. coli adhesion to polyamides and polystyrene with atomic force microscopy Colloids Surfaces Biointerfaces 2008 65 308 10.1016/j.colsurfb.2008.05.005
Wang Y. Guan A. Isayeva I. Vorvolakos K. Das S. Li Z. Phillips K.S. Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials Biomaterials 2016 95 74 10.1016/j.biomaterials.2016.04.005
Francius G. Cervulle M. Clément E. Bellanger X. Ekrami S. Gantzer C. Duval J.F.L. Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity ACS Appl. Bio Mater. 2021 4 2614 10.1021/acsabm.0c01595
Gomez S. Bureau L. John K. Chêne E.-N. Débarre D. Lecuyer S. Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility eLife 2023 12 e81112 10.7554/eLife.81112
Khan M.T. Cammann J. Sengupta A. Renzi E. Mazza M.G. Toward a realistic model of multilayered bacterial colonies Condens. Matter Phys. 2024 27 13802 10.5488/cmp.27.13802
Gordon V.D. Wang L. Bacterial mechanosensing: The force will be with you, always J. Cell Sci. 2019 132 jcs227694 10.1242/jcs.227694
Kimkes T.E. Heinemann M. How bacteria recognise and respond to surface contact FEMS Microbiol. Rev. 2020 44 106 10.1093/femsre/fuz029 31769807
Kuthan M. Devaux F. Janderová B. Slaninová I. Jacq C. Palková Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology Mol. Microbiol. 2003 47 745 10.1046/j.1365-2958.2003.03332.x 12535073
Barua S. Li L. Lipke P. Dranginis A. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p mSphere 2016 1 e00129-16 10.1128/mSphere.00129-16 27547826