[en] Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are a primary monogenic cause of Parkinson's disease (PD). However, the likelihood of developing PD with inherited LRRK2 pathogenic variants differs (a phenomenon known as "reduced penetrance"), with factors including age and geographic region, highlighting a potential role for lifestyle and environmental factors in disease onset. To investigate this, household dust samples from four different groups of individuals were analyzed using metabolomics/exposomics and metagenomics approaches: PD+/LRRK2+ (PD patients with pathogenic LRRK2 variants; n = 11), PD-/LRRK2+ (individuals with pathogenic LRRK2 variants but without PD diagnosis; n = 8), iPD (PD of unknown cause; n = 11), and a matched, healthy control group (n = 11). The dust was complemented with metabolomics and lipidomics of matched serum samples, where available. A total of 1,003 chemicals and 163 metagenomic operational taxonomic units (mOTUs) were identified in the dust samples, of which ninety chemicals and ten mOTUs were statistically significant (ANOVA p-value < 0.05). Reduced levels of 2-benzothiazolesulfonic acid (BThSO3) were found in the PD-/LRRK2+ group compared to the PD+/LRRK2+ . Among the significant chemicals tentatively identified in dust, two are hazardous chemical replacements: Bisphenol S (BPS), and perfluorobutane sulfonic acid (PFBuS). Furthermore, various lipids were found altered in serum including different lysophosphatidylethanolamines (LPEs), and lysophosphatidylcholines (LPCs), some with higher levels in the PD+/LRRK2+ group compared to the control group. A cellular study on isogenic neurons generated from a PD+/LRRK2+ patient demonstrated that BPS negatively impacts mitochondrial function, which is implicated in PD pathogenesis. This pilot study demonstrates how non-target metabolomics/exposomics analysis of indoor dust samples complemented with metagenomics can prioritize relevant chemicals that may be potential modifiers of LRRK2 penetrance.
Disciplines :
Sciences de l’environnement & écologie
Auteur, co-auteur :
TALAVERA ANDÚJAR, Begoña ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
CARDOSO PEREIRA, Sandro Lino ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Molecular and Functional Neurobiology > Team Anne GRÜNEWALD
BUSI, Susheel Bhanu ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
Usnich, Tatiana; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
Borsche, Max; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany, Department of Neurology, University of Lübeck, Lübeck, Germany
Ertan, Sibel; School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
Bauer, Peter; CENTOGENE GmbH, Rostock, Germany
Rolfs, Arndt; CENTOGENE GmbH, Rostock, Germany
HEZZAZ, Soraya ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Molecular and Functional Neurobiology
GHELFI, Jenny ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Molecular and Functional Neurobiology
Brüggemann, Norbert; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany, Department of Neurology, University of Lübeck, Lübeck, Germany
ANTONY, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Scientific Central Services > Imaging Platform
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Klein, Christine; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
GRÜNEWALD, Anne ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Molecular and Functional Neurobiology
SCHYMANSKI, Emma ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
We thank the Metabolomics Platform of the LCSB for their support with the LC-HRMS analysis. Floriane Gavotto is acknowledged for performing the target LC-MS analysis of the bile acids and the help during data processing with TraceFinder. Rashi Halder and all the sequencing platform of the LCSB is acknowledged for performing the sequencing experiment. The Bioimaging Platform of the LCSB is acknowledged for the support with the imaging analysis of the cell-based experiments. Meike Kasten, MD and Eva-Juliane Vollstedt, MD from the Institute of Neurogenetics, University of Luebeck are acknowledged for their contributions to the design and development of the LIPAD study. Prof. Dr. \u00D6zg\u00FCr \u00D6ztop \u00C7akmak and Prof. Dr. Ay\u015Fe Nazl\u0131 Ba\u015Fak from the Department of Neurology, Koc University, Turkey, are acknowledged for their contributions towards the Turkish LRRK2 samples. We thank Dr. Leonid Zaslavsky, Dr. Evan Bolton, and Dr. Tiejun Cheng from the PubChem Team for the help preparing the LRRK2 suspect list of chemicals. Dr. Gianfranco Frigerio is acknowledged for his inputs during the dust sample preparation and data processing. We acknowledge Veronica Codoni for her assistance with the power analysis calculation and its interpretation. The computational analyses presented in this paper were carried out using the HPC facilities at the University of Luxembourg (Homepage | HPC @ Uni.lu, 2024; Varrette et al. 2014). BTA is part of the \u201CMicrobiomes in One Health\u201D PhD training program, which is supported by the PRIDE doctoral research funding scheme (PRIDE/11823097) of the Luxembourg National Research Fund (FNR). ELS acknowledges funding support from the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. AG received funds from the FNR within the framework of the INTER grants \u201CProtectMove I and II\u201D (FNR11250962 and INTER/DFG/19/14429377) and the ATTRACT career development grant \u201CModel-IPD\u201D (FNR9631103). The LIPAD study has been supported by institutional funds (Institute of Neurogenetics, University of L\u00FCbeck), and was partly supported by Centogene GmbH. Moreover, this study was supported by the German Research Foundation (DFG, ProtectMove FOR2488 to CK, NB, and AG).
“PubChem Classification Browser.” Accessed: May 19, 2024. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/classification/#hid=72.
“PubChem Classification Browser.” Accessed: May 20, 2024. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101.
N. Alygizakis and J. Slobodnik, “S32 | REACH2017 | >68,600 REACH Chemicals.” Zenodo. 20, 2018. doi: 10.5281/zenodo.2653021.
An, H., Yu, H., Wei, Y., Liu, F., Ye, J., Disrupted metabolic pathways and potential human diseases induced by bisphenol S. Environ. Toxicol. Pharmacol., 88, 2021, 103751, 10.1016/j.etap.2021.103751.
K. S. Andersen, KasperSkytte/ampvis2. (Jan. 16, 2024). R. Accessed: Feb. 19, 2024. [Online]. Available: https://github.com/KasperSkytte/ampvis2.
S. Andres and V. Dulio, “S109 | PARCEDC | List of 7074 potential endocrine disrupting compounds (EDCs) by PARC T4.2.” Zenodo. 08, 2024. doi: 10.5281/zenodo.10944199.
N. Baker, E. Schymanski, and A. Williams, “S37 | LITMINEDNEURO | Neurotoxicants from literature mining PubMed.” Zenodo. 10, 2019. doi: 10.5281/zenodo.3242298.
Baumuratov, A.S., et al. Enteric neurons from Parkinson's disease patients display ex vivo aberrations in mitochondrial structure. Sci. Rep., 6(1), 2016, 33117, 10.1038/srep33117.
Bjørklund, G., Dadar, M., Chirumbolo, S., Aaseth, J., The Role of Xenobiotics and Trace Metals in Parkinson's Disease. Mol. Neurobiol. 57:3 (2020), 1405–1417, 10.1007/s12035-019-01832-1.
Boktor, J.C., et al. Integrated Multi-Cohort Analysis of the Parkinson's Disease Gut Metagenome. Mov. Disord. 38:3 (2023), 399–409, 10.1002/mds.29300.
Bose, A., Beal, M.F., Mitochondrial dysfunction in Parkinson's disease. J. Neurochem. 139:S1 (2016), 216–231, 10.1111/jnc.13731.
Broadhurst, D., et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics, 14(6), 2018, 72, 10.1007/s11306-018-1367-3.
Cajka, T., Smilowitz, J.T., Fiehn, O., Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography–High-Resolution Mass Spectrometry Platforms. Anal. Chem. 89:22 (2017), 12360–12368, 10.1021/acs.analchem.7b03404.
Cao, S., et al. Prenatal exposure to benzotriazoles and benzothiazoles and child neurodevelopment: A longitudinal study. Sci. Total Environ., 865, 2023, 161188, 10.1016/j.scitotenv.2022.161188.
Chambers, M.C., et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30:10 (2012), 918–920, 10.1038/nbt.2377.
K.-H. Chang, M.-L. Cheng, H.-Y. Tang, C.-Y. Huang, H.-C. Wu, and C.-M. Chen, “Alterations of Sphingolipid and Phospholipid Pathways and Ornithine Level in the Plasma as Biomarkers of Parkinson's Disease,” Cells, vol. 11, no. 3, Art. no. 3. 2022, doi: 10.3390/cells11030395.
Chen, S.-J., Lin, C.-H., Gut microenvironmental changes as a potential trigger in Parkinson's disease through the gut–brain axis. J. Biomed. Sci., 29(1), 2022, 54, 10.1186/s12929-022-00839-6.
Chong, J., Liu, P., Zhou, G., Xia, J., Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15:3 (2020), 799–821, 10.1038/s41596-019-0264-1.
ConesaLab/MultiPower. (Mar. 12, 2024). R. ConesaLab - Genomics of gene expression. Accessed: Mar. 27, 2024. [Online]. Available: https://github.com/ConesaLab/MultiPower.
Cousins, I.T., et al. The high persistence of PFAS is sufficient for their management as a chemical class. Environ. Sci. Process. Impacts 22:12 (2020), 2307–2312, 10.1039/D0EM00355G.
L. A. Dahabiyeh, R. M. Nimer, M. Rashed, J. D. Wells, and O. Fiehn, “Serum-Based Lipid Panels for Diagnosis of Idiopathic Parkinson's Disease,” Metabolites, vol. 13, no. 9, Art. no. 9. 2023, doi: 10.3390/metabo13090990.
Dalazen, G.R., et al. Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metab. Brain Dis. 29:1 (2014), 175–183, 10.1007/s11011-013-9466-3.
David, A., et al. Towards a comprehensive characterisation of the human internal chemical exposome: Challenges and perspectives. Environ. Int., 156, 2021, 106630, 10.1016/j.envint.2021.106630.
De Wever, H., Verachtert, H., Besse, P., Microbial transformations of 2-substituted benzothiazoles. Appl. Microbiol. Biotechnol. 57:5–6 (2001), 620–625, 10.1007/s00253-001-0842-2.
N. Dodder and K. Mullen, OrgMassSpecR: Organic Mass Spectrometry. (Aug. 13, 2017). Accessed: Jan. 29, 2024. [Online]. Available: https://cran.r-project.org/web/packages/OrgMassSpecR/index.html.
Dubocq, F., Kärrman, A., Gustavsson, J., Wang, T., Comprehensive chemical characterization of indoor dust by target, suspect screening and nontarget analysis using LC-HRMS and GC-HRMS. Environ. Pollut., 276, 2021, 116701, 10.1016/j.envpol.2021.116701.
Eichenlaub, R., Gartemann, K.-H., The Clavibacter michiganensis Subspecies: Molecular Investigation of Gram-Positive Bacterial Plant Pathogens. Annu. Rev. Phytopathol. 49:1 (2011), 445–464, 10.1146/annurev-phyto-072910-095258.
J. Fernández-Irigoyen, P. Cartas-Cejudo, M. Iruarrizaga-Lejarreta, and E. Santamaría, “Alteration in the Cerebrospinal Fluid Lipidome in Parkinson's Disease: A Post-Mortem Pilot Study,” Biomedicines, vol. 9, no. 5, Art. no. 5 2021, doi: 10.3390/biomedicines9050491.
Foster, R.L., What a pilot study is and what it is not. J. Spec. Pediatr. Nurs. 18:1 (2013), 1–2, 10.1111/jspn.12015.
Fuentes-Ferragud, E., Miralles, P., López, A., Ibáñez, M., Coscollà, C., Non-target screening and human risk assessment for adult and child populations of semi-volatile organic compounds in residential indoor dust in Spain. Chemosphere, 340, 2023, 139879, 10.1016/j.chemosphere.2023.139879.
M. Fujimaki et al., “Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease,” Neurology, vol. 90, no. 5. 2018, doi: 10.1212/WNL.0000000000004888.
Galper, J., et al. “Lipid pathway dysfunction is prevalent in patients with Parkinson's disease”, Brain. J. Neurol., 2022, p. awac176, 10.1093/brain/awac176.
Gonzalez-Riano, C., et al. Prognostic biomarkers of Parkinson's disease in the Spanish EPIC cohort: a multiplatform metabolomics approach. Npj Park. Dis. 7:1 (2021), 1–12, 10.1038/s41531-021-00216-4.
Graham, S.F., et al. Metabolomic Profiling of Bile Acids in an Experimental Model of Prodromal Parkinson's Disease. Metabolites, 8(4), 2018, 71, 10.3390/metabo8040071.
K. Groh and E. Schymanski, “S49 | CPPDBLISTB | Database of Chemicals possibly (List B) associated with Plastic Packaging (CPPdb).” Zenodo. 06, 2019. doi: 10.5281/ZENODO.2658152.
Gu, J., Guo, L., Chen, C., Ji, G., Wang, L., Neurobehavioral toxic effects and mechanisms of 2-aminobenzothiazole exposure on zebrafish. Sci. Total Environ., 913, 2024, 169495, 10.1016/j.scitotenv.2023.169495.
Gyimah, E., et al. Developmental neurotoxicity of low concentrations of bisphenol A and S exposure in zebrafish. Chemosphere, 262, 2021, 128045, 10.1016/j.chemosphere.2020.128045.
P. Haglund and P. Rostkowski, “S35 | INDOORCT16 | Indoor Environment Substances from 2016 Collaborative Trial,” Feb. 2019, doi: 10.5281/zenodo.6848859.
Healy, D.G., et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7:7 (2008), 583–590, 10.1016/S1474-4422(08)70117-0.
R. Helmus, T. L. ter Laak, A. P. van Wezel, P. de Voogt, and E. L. Schymanski, patRoon: open source software platform for environmental mass spectrometry based non-target screening. (Jan. 2021). R. doi: 10.1186/s13321-020-00477-w.
Helmus, R., van de Velde, B., Brunner, A.M., ter Laak, T.L., van Wezel, A.P., Schymanski, E.L., patRoon 2.0: Improved non-target analysis workflows including automated transformation product screening. J. Open Source Softw., 7(71), 2022, 4029, 10.21105/joss.04029.
Hentati, F., Trinh, J., Thompson, C., Nosova, E., Farrer, M.J., Aasly, J.O., LRRK2 parkinsonism in Tunisia and Norway: A comparative analysis of disease penetrance. Neurology 83:6 (2014), 568–569, 10.1212/WNL.0000000000000675.
Höglinger, G.U., et al. A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23:2 (2024), 191–204, 10.1016/S1474-4422(23)00404-0.
Hollender, J., et al. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environ. Sci. Eur., 35(1), 2023, 75, 10.1186/s12302-023-00779-4.
Hornung, M.W., et al. In Vitro, Ex Vivo, and In Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles. Toxicol. Sci. 146:2 (2015), 254–264, 10.1093/toxsci/kfv090.
Hu, C., Huang, Z., Sun, B., Liu, M., Tang, L., Chen, L., Metabolomic profiles in zebrafish larvae following probiotic and perfluorobutanesulfonate coexposure. Environ. Res., 204, 2022, 112380, 10.1016/j.envres.2021.112380.
Kathage, J., Castañera, P., Alonso-Prados, J.L., Gómez-Barbero, M., Rodríguez-Cerezo, E., The impact of restrictions on neonicotinoid and fipronil insecticides on pest management in maize, oilseed rape and sunflower in eight European Union regions. Pest Manag. Sci. 74:1 (2018), 88–99, 10.1002/ps.4715.
Kim, S., et al. PubChem 2023 update. Nucleic Acids Res. 51:D1 (2023), D1373–D1380, 10.1093/nar/gkac956.
T. Kind, K.-H. Liu, D. Y. Lee, B. DeFelice, J. K. Meissen, and O. Fiehn, “LipidBlast in silico tandem mass spectrometry database for lipid identification,” Nat. Methods, vol. 10, no. 8, Art. no. 8. 2013, doi: 10.1038/nmeth.2551.
Kleespies, R.G., Federici, B.A., Leclerque, A., Ultrastructural characterization and multilocus sequence analysis (MLSA) of ‘Candidatus Rickettsiella isopodorum’, a new lineage of intracellular bacteria infecting woodlice (Crustacea: Isopoda). Syst. Appl. Microbiol. 37:5 (2014), 351–359, 10.1016/j.syapm.2014.04.001.
Koelmel, J.P., et al. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinf., 18(1), 2017, 331, 10.1186/s12859-017-1744-3.
Kunath, B.J., De Rudder, C., Laczny, C.C., Letellier, E., Wilmes, P., The oral–gut microbiome axis in health and disease. Nat. Rev. Microbiol., 2024, 1–15, 10.1038/s41579-024-01075-5.
Lancaster, G.A., Dodd, S., Williamson, P.R., Design and analysis of pilot studies: recommendations for good practice. J. Eval. Clin. Pract. 10:2 (2004), 307–312, 10.1111/j.2002.384.doc.x.
Lange, M., Fedorova, M., Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal. Bioanal. Chem. 412:15 (2020), 3573–3584, 10.1007/s00216-020-02576-x.
Li, P., et al. Gut Microbiota Dysbiosis Is Associated with Elevated Bile Acids in Parkinson's Disease. Metabolites, 11(1), 2021, 29, 10.3390/metabo11010029.
Liao, C., Kim, U.-J., Kannan, K., A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles. Environ. Sci. Technol. 52:9 (2018), 5007–5026, 10.1021/acs.est.7b05493.
Lilienblum, W., et al. Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch. Toxicol. 82:4 (2008), 211–236, 10.1007/s00204-008-0279-9.
Lim, S.-Y., Klein, C., Parkinson's Disease is Predominantly a Genetic Disease. J. Park. Dis. 14:3 (2024), 467–482, 10.3233/JPD-230376.
Lin, T.-K., et al. When Friendship Turns Sour: Effective Communication Between Mitochondria and Intracellular Organelles in Parkinson's Disease. Front. Cell Dev. Biol., 8, 2020, 607392, 10.3389/fcell.2020.607392.
Loh, J.S., et al. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 9:1 (2024), 1–53, 10.1038/s41392-024-01743-1.
Lubomski, M., Tan, A.H., Lim, S.-Y., Holmes, A.J., Davis, R.L., Sue, C.M., Parkinson's disease and the gastrointestinal microbiome. J. Neurol. 267:9 (2020), 2507–2523, 10.1007/s00415-019-09320-1.
Lüth, T., et al. Interaction of Mitochondrial Polygenic Score and Lifestyle Factors in LRRK2 p.Gly2019Ser Parkinsonism. Mov. Disord. off. J. Mov. Disord. Soc. 38:10 (2023), 1837–1849, 10.1002/mds.29563.
Y. Ma et al., “Nocardioides: ‘Specialists’ for Hard-to-Degrade Pollutants in the Environment,” Molecules, vol. 28, no. 21, Art. no. 21. 2023, doi: 10.3390/molecules28217433.
Matsuda, Y., Higashino, K., Adachi, K., Amuro, Y., Hada, T., Production of pipecolic acid from intestinal bacteria: Plasma levels of pipecolic acid in patients with liver cirrhosis decreased after oral kanamycin administration. Int. Hepatol. Commun. 4:1 (1995), 26–34, 10.1016/0928-4346(95)00210-A.
J. Mayfield, “CDK Depict Web Interface.” 2023. Accessed: Mar. 09, 2023. [Online]. Available: https://www.simolecule.com/cdkdepict/depict.html.
Miller, M., Cook, L., Verbrugge, J., Hodges, P.D., Head, K.J., Nance, M.A., Delivering Genetic Test Results for Parkinson Disease. Neurol. Clin. Pract., 14(2), 2024, e200282.
Min, E.K., et al. Integrative multi-omics reveals analogous developmental neurotoxicity mechanisms between perfluorobutanesulfonic acid and perfluorooctanesulfonic acid in zebrafish. J. Hazard. Mater., 457, 2023, 131714, 10.1016/j.jhazmat.2023.131714.
Mohanty, I., et al. The changing metabolic landscape of bile acids – keys to metabolism and immune regulation. Nat. Rev. Gastroenterol. Hepatol. 21:7 (2024), 493–516, 10.1038/s41575-024-00914-3.
Moschet, C., Anumol, T., Lew, B.M., Bennett, D.H., Young, T.M., Household dust as a repository of chemical accumulation: New insights from a comprehensive high-resolution mass spectrometry study. Environ. Sci. Technol. 52:5 (2018), 2878–2887, 10.1021/acs.est.7b05767.
Naderi, M., Kwong, R.W.M., A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. Environ. Int., 145, 2020, 106078, 10.1016/j.envint.2020.106078.
Narayanasamy, S., et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol., 17(1), 2016, 260, 10.1186/s13059-016-1116-8.
Shaman Narayanasamy, Yohan Jarosz, and Anna Heintz-Buschart, “IMP / IMP3 · GitLab,” GitLab. Accessed: Mar. 26, 2024. [Online]. Available: https://gitlab.lcsb.uni.lu/IMP/imp3.
Nazar, N., et al. Untargeted metabolomics reveals potential health risks associated with chronic exposure to environmentally relevant concentrations of 2-Phenylphenol. Sci. Total Environ., 912, 2024, 169172, 10.1016/j.scitotenv.2023.169172.
Nickels, S.L., et al. Impaired serine metabolism complements LRRK2-G2019S pathogenicity in PD patients. Parkinsonism Relat. Disord. 67 (2019), 48–55, 10.1016/j.parkreldis.2019.09.018.
Nielsen, N.J., Christensen, P., Poulsen, K.G., Christensen, J.H., Investigation of micropollutants in household waste fractions processed by anaerobic digestion: target analysis, suspect- and non-target screening. Environ. Sci. Pollut. Res. 30:16 (2023), 48491–48507, 10.1007/s11356-023-25692-4.
Nontargeted Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry Method and Software for Inventorying Persistent and Bioaccumulative Contaminants in Marine Environments. Environ. Sci. Technol. 2012, 46, 15, 8001–8008. https://doi.org/10.1021/es301139q.
Palacios Colón, L., Rascón, A.J., Hejji, L., Azzouz, A., Ballesteros, E., Validation and Use of an Accurate, Sensitive Method for Sample Preparation and Gas Chromatography-Mass Spectrometry Determination of Different Endocrine-Disrupting Chemicals in Dairy Products. Foods, 10(5), 2021, 1040, 10.3390/foods10051040.
Pang, Z., et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res., 2024, p. gkae253, 10.1093/nar/gkae253.
Pereira, P.A.B., Aho, V.T.E., Paulin, L., Pekkonen, E., Auvinen, P., Scheperjans, F., Oral and nasal microbiota in Parkinson's disease. Parkinsonism Relat. Disord. 38 (2017), 61–67, 10.1016/j.parkreldis.2017.02.026.
Qian, Y., et al. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease. Brain. Behav. Immun. 70 (2018), 194–202, 10.1016/j.bbi.2018.02.016.
Reinhardt, P., et al. Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling. PLoS One, 8(3), 2013, e59252.
Reinhardt, P., et al. Genetic Correction of a LRRK2 Mutation in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene Expression. Cell Stem Cell 12:3 (2013), 354–367, 10.1016/j.stem.2013.01.008.
Rohart, F., Gautier, B., Singh, A., Cao, K.-A.-L., mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol., 13(11), 2017, e1005752.
Romano, S., Savva, G.M., Bedarf, J.R., Charles, I.G., Hildebrand, F., Narbad, A., Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. Npj Park. Dis., 7(1), 2021, 27, 10.1038/s41531-021-00156-z.
Rostkowski, P., et al. The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal. Bioanal. Chem. 411:10 (2019), 1957–1977, 10.1007/s00216-019-01615-6.
Sakowski, S.A., Koubek, E.J., Chen, K.S., Goutman, S.A., Feldman, E.L., Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann. Neurol. 95:4 (2024), 635–652, 10.1002/ana.26897.
Salis, S., et al. Occurrence of imidacloprid, carbendazim, and other biocides in Italian house dust: Potential relevance for intakes in children and pets. J. Environ. Sci. Health Part B 52:9 (2017), 699–709, 10.1080/03601234.2017.1331675.
Schirmer, E., Schuster, S., Machnik, P., Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains. Commun. Biol. 4:1 (2021), 1–9, 10.1038/s42003-021-01966-w.
Schneider, S.A., Alcalay, R.N., Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov. Disord. 32:11 (2017), 1504–1523, 10.1002/mds.27193.
Schwarzenbach, R.P., et al. The Challenge of Micropollutants in Aquatic Systems. Science 313:5790 (2006), 1072–1077, 10.1126/science.1127291.
Shan, Y., et al. Modern urbanization has reshaped the bacterial microbiome profiles of house dust in domestic environments. World Allergy Organ. J., 13(8), 2020, 100452, 10.1016/j.waojou.2020.100452.
Shan, Y., Wu, W., Fan, W., Haahtela, T., Zhang, G., House dust microbiome and human health risks. Int. Microbiol. 22:3 (2019), 297–304, 10.1007/s10123-019-00057-5.
Siderowf, A., et al. Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol. 22:5 (2023), 407–417, 10.1016/S1474-4422(23)00109-6.
Skrahina, V., et al. The Rostock International Parkinson's Disease (ROPAD) Study: Protocol and Initial Findings. Mov. Disord. off. J. Mov. Disord. Soc. 36:4 (2021), 1005–1010, 10.1002/mds.28416.
Steinmetz, J.D., et al. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 23:4 (2024), 344–381, 10.1016/S1474-4422(24)00038-3.
Subramaniam, S.R., Chesselet, M.-F., Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog. Neurobiol. 106–107 (2013), 17–32, 10.1016/j.pneurobio.2013.04.004.
Takeshige-Amano, H., et al. Shared Metabolic Profile of Caffeine in Parkinsonian Disorders. Mov. Disord. 35:8 (2020), 1438–1447, 10.1002/mds.28068.
Talavera Andújar, B., et al. Studying the Parkinson's disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Anal. Bioanal. Chem., 2022, 10.1007/s00216-022-04207-z.
Talavera Andújar, B., et al. Can Small Molecules Provide Clues on Disease Progression in Cerebrospinal Fluid from Mild Cognitive Impairment and Alzheimer's Disease Patients?. Environ. Sci. Technol., 2024, 10.1021/acs.est.3c10490.
Tarazona, S., et al. Harmonization of quality metrics and power calculation in multi-omic studies. Nat. Commun., 11(1), 2020, 3092, 10.1038/s41467-020-16937-8.
Testa, C., Salis, S., Rubattu, N., Roncada, P., Miniero, R., Brambilla, G., Occurrence of Fipronil in residential house dust in the presence and absence of pets: a hint for a comprehensive toxicological assessment. J. Environ. Sci. Health Part B 54:6 (2019), 441–448, 10.1080/03601234.2019.1607133.
J. R. Thompson et al., “Bacterial Diversity in House Dust: Characterization of a Core Indoor Microbiome,” Front. Environ. Sci., vol. 9. 2021, doi: 10.3389/fenvs.2021.754657.
J. R. Thompson et al., “Bacterial Diversity in House Dust: Characterization of a Core Indoor Microbiome,” Front. Environ. Sci., vol. 9, 2021, Accessed: Mar. 01, 2024. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenvs.2021.754657.
Trinh, J., Schymanski, E.L., Smajic, S., Kasten, M., Sammler, E., Grünewald, A., Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. Med. Genet. 34:2 (2022), 103–116, 10.1515/medgen-2022-2127.
Tsafaras, G., Baekelandt, V., The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases. Neurobiol. Dis., 172, 2022, 105806, 10.1016/j.nbd.2022.105806.
H. Tsugawa et al., “MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis,” Nat. Methods, vol. 12, no. 6, Art. no. 6. 2015, doi: 10.1038/nmeth.3393.
T. Usnich et al., “LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort,” Front. Neurol., vol. 12, 2021, Accessed: Dec. 08, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fneur.2021.710572.
van der Merwe, D., Jordaan, A., van den Berg, M., “Case report: fipronil contamination of chickens in the Netherlands and surrounding countries”, in Chemical hazards in foods of animal origin. Wageningen Academic, 2019, 567–584, 10.3920/978-90-8686-877-3_23.
Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F., Jul. 2014. Management of an academic HPC cluster: The UL experience. In: 2014 International Conference on High Performance Computing & Simulation (HPCS), pp. 959–967. https://doi.org/10.1109/HPCSim.2014.6903792.
S. Vascellari et al., “Gut Microbiota and Metabolome Alterations Associated with Parkinson's Disease,” mSystems, vol. 5, no. 5, pp. e00561-20. 2020, doi: 10.1128/mSystems.00561-20.
von der Ohe, P., Aalizadeh, R., “S13 | EUCOSMETICS | Combined Inventory of Ingredients Employed in Cosmetic Products. And Revised Inventory (2006)”. Zenodo, 28, 2000, 2020, 10.5281/zenodo.3959386.
Westenberger, A., et al. Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson's disease study. Brain 147:8 (2024), 2652–2667, 10.1093/brain/awae188.
Xu, Y., et al. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. Sci. Total Environ., 919, 2024, 170670, 10.1016/j.scitotenv.2024.170670.
Yu, G., Xu, C., Zhang, D., Ju, F., Ni, Y., MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. iMeta, 1(1), 2022, e10.