Article (Périodiques scientifiques)
DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories
EL HARIRY, Mhamed Matteo; RICHARD, Antoine; MURALIDHARAN, Vivek et al.
2024In IEEE International Conference on Intelligent Robots and Systems, p. 14034-14041
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
DRIFT_Deep_Reinforcement_Learning_for_Intelligent_Floating_Platforms_Trajectories.pdf
Postprint Auteur (5.38 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Reinforcement Learning, Robotics, Spacecraft autonomy, sim-to-real
Résumé :
[en] This investigation introduces a novel deep reinforcement learning-based suite to control floating platforms in both simulated and real-world environments. Floating platforms serve as versatile test-beds to emulate microgravity environments on Earth, useful to test autonomous navigation systems for space applications. Our approach addresses the system and environmental uncertainties in controlling such platforms by training policies capable of precise maneuvers amid dynamic and unpredictable conditions. Leveraging Deep Reinforcement Learning (DRL) techniques, our suite achieves robustness, adaptability, and good transferability from simulation to reality. Our deep reinforcement learning framework provides advantages such as fast training times, large-scale testing capabilities, rich visualization options, and ROS bindings for integration with real-world robotic systems. Being open access, our suite serves as a comprehensive platform for practitioners who want to replicate similar research in their own simulated environments and labs.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
EL HARIRY, Mhamed Matteo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
RICHARD, Antoine ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Space Robotics
MURALIDHARAN, Vivek  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > Space Robotics > Team Miguel Angel OLIVARES MENDEZ
Geist, Matthieu;  Matthieu Geist is With Cohere
Olivares-Mendez, Miguel;  University of Luxembourg,Space Robotics (SpaceR) Research Group, SnT
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories
Date de publication/diffusion :
14 octobre 2024
Titre du périodique :
IEEE International Conference on Intelligent Robots and Systems
ISSN :
2153-0858
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Pagination :
14034-14041
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 09 janvier 2025

Statistiques


Nombre de vues
90 (dont 9 Unilu)
Nombre de téléchargements
54 (dont 4 Unilu)

OpenCitations
 
0
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu