Genetic algorithm; Interstellar exploration; Interstellar travel; Multi-target mission; Optimization; Spaceflight; Exploration strategies; Mission design; Multi-targets; Optimal strategies; Optimisations; Star model; Aerospace Engineering; Astronomy and Astrophysics; Geophysics; Atmospheric Science; Space and Planetary Science; Earth and Planetary Sciences (all); Multi -target mission
Abstract :
[en] In the past decade, the discovery of exoplanets has sparked new interests in the idea of interstellar travel and exploration. Despite various proposals for probe concepts and relevant technologies, there is a lack of extensive literature on viable exploration strategies for journeys beyond a single star system. Such exploration strategies might not only have implications on technology development strategies for achieving interstellar exploration but could also enrich existing models for galactic exploration feeding into solutions of the Fermi Paradox. This article presents optimal strategies for the exploration of a large number of near-by stars, using a dedicated, novel methodology, which sets it apart from existing literature: For the first time, the mission design problem of interstellar exploration is redefined as a bi-objective multi-vehicle open routing problem with profits. It is tackled by an adapted hybrid multi-objective genetic algorithm, which is further improved and modified according to the problem characteristics (e. g. large search space). The overall mission model assumes probes traveling on straight trajectories, utilizing flybys, and maintaining an average velocity of 10% of the speed of light. Surpassing prior research that typically relies on statistical models or restricted star data, the star models are founded on the second Gaia data release (Gaia DR2), which represents the most extensive star catalogue to the date of this study and is employed for the first time in the context of interstellar exploration. The resulting star model contains a maximum of 10,000 stars within a spherical region around Sol, covering a distance of 110 light years. It is found, that the number of explored stars J1 scales with mission duration J2 and probe number m according to J1∼J2m0.66, which provides an initial guidance for future interstellar mission design. Furthermore, the routes and selection of stars vary depending on the number of probes used: When conducting missions with a large number of probes, stars in close proximity to the Solar System are given more focus. On the other hand, missions with a small number of probes include more distant stars to facilitate shorter transfers along the route. Based on these findings, the following recommendations for interstellar exploration strategies can be drawn: When energy resources such as fuel reserves are scarce and the exploration mission is not limited to nearby stars, low probe numbers are more efficient. In contrast, high probe numbers enable faster exploration of nearby stars but involve less resource-efficient transfers, making them a suitable option for small, remotely propelled probe concepts. To address crowding effects in high probe number missions, swarm-based probe concepts are recommended based on the scaling law characteristics derived.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Lebert, Johannes; Technische Universität München, München, Germany
HEIN, Andreas ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SPASYS ; Initiative for Interstellar Studies (i4is), London, United Kingdom
Dziura, Martin; Technische Universität München, München, Germany
External co-authors :
yes
Language :
English
Title :
Optimal strategies for the exploration of near-by stars
Bailer-Jones, C.A.L., Rybizki, J., Fouesneau, M., Mantelet, G., Andrae, R., Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia data release 2. Astron. J., 156(2), 2018, 10.3847/1538-3881/aacb21.
Baumann, E., Swarm-based concepts for resilient autonomous interstellar exploration systems. Insight 18:1 (2015), 34–40, 10.1002/inst.12009.
Beals, K.A., Beaulieu, M., Dembia, F.J., Kerstiens, J., Kramer, D.L., West, J.R., Zito, J.A., Project Longshot: An Unmanned Probe to Alpha Centauri. 1988, US Naval Academy.
Bederina, H., Hifi, M., A hybrid multi-objective evolutionary algorithm for the team orienteering problem. 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), 2017, IEEE, 898–903 https://doi.org/10.1109/CoDIT.2017.8102710.
Bjoerk, R., Exploring the Galaxy using space probes. Int. J. Astrobiol. 6:2 (2007), 89–93, 10.1017/S1473550407003709.
Bond, A., Martin, A., Buckland, R., Grant, T., Lawton, T., Mattinson, H., Parfitt, J., Parkinson, B., Richards, G., Strong, J., Webb, G., White, T., Wright, P., Project daedalus – the final report on the BIS starship study. J. Br. Interplanet. Soc., 1978.
Boubert, D., Guillochon, J., Hawkins, K., Ginsburg, I., Evans, N.W., Strader, J., Revisiting hypervelocity stars after Gaia DR2. MNRAS 479:2 (2018), 2789–2795, 10.1093/mnras/sty1601.
Boyd, S., Ghosh, A., Magnani, A., Branch and Bound Methods. 2003, Stanford University.
Brown, W.R., Hypervelocity stars in the Milky Way. Physics Today 69:6 (2016), 52–58, 10.1063/PT.3.3199.
Cartin, D., Exploration of the local solar neighbourhood I: fixed number of probes. Int. J. Astrobiol. 12:4 (2013), 271–281, 10.1017/S1473550413000098.
Chao, I.-M., Golden, B.L., Wasil, E.A., The team orienteering problem. Eur. J. Oper. Res. 88:3 (1996), 464–474, 10.1016/0377-2217(94)00289-4.
Cohen, S.A., Swanson, C., Mcgreivy, N., Raja, A., Evans, E., Jandovitz, P., Khodak, M., Pajerj, G., Rognuen, T.D., Thomas, S., Paluszek, M., Direct fusion drive for interstellar exploration. JBIS – J. Br. Interplanet. Soc. 72:2 (2019), 37–50.
Cotta, C., Morales, A., A computational analysis of galactic exploration with space probes: implications for the fermi paradox. JBIS – J. Br. Interplanet. Soc. 62:3 (2009), 82–88, 10.48550/arXiv.0907.0345.
Crawford, I.A., The astronomical, astrobiological and planetary science case for interstellar spaceflight. JBIS – J. Br. Interplanet. Soc. 62 (2009), 415–421, 10.48550/arXiv.1008.4893.
Dang, D.C., Guibadj, R.N., Moukrim, A., An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 229:2 (2013), 332–344, 10.1016/j.ejor.2013.02.049.
Davendra, D., Traveling Salesman Problem: Theory and Applications. 2010, InTech https://doi.org/10.5772/547.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:2 (2002), 182–197, 10.1109/4235.996017.
Dolgui, A., Gafarov, E., Can a Branch and Bound algorithm solve all instances of SALBP-1 efficiently?. IFAC-PapersOnLine 52:13 (2019), 2788–2791, 10.1016/j.ifacol.2019.11.630.
Elachi, C., Angel, R., Beichman, C., Boss, A., Brown, R., Dressler, A., Dyson, F., Fanson, J., Ftaclas, C., Goad, L., Klein, M., Leger, A., Lillie, C., Peale, S., Peterson, D., Reasenberg, B., Sandler, D., Shao, M., Simon, R., Tenerelli, D., A road map for the exploration of neighboring planetary systems (ExNPS). JPL Publ., 1996, 96–122.
Encyclopedia Britannica, n.d. Diminishing returns. Available at: https://www.britannica.com/topic/diminishing-returns.
ESA, 2018. Gaia Data Release 2 (Gaia DR2). Available at: https://www.cosmos.esa.int/web/gaia/dr2.
European Southern Observatory, 2016. Planet Found in Habitable Zone Around Nearest Star. Pale Red Dot campaign reveals Earth-mass world in orbit around Proxima Centauri. Available at: https://www.eso.org/public/news/eso1629/.
Fantino, E., Casotto, S., Izzo, D., Study on Libration Points of the Sun and the Interstellar Medium for Interstellar Travel. 2004, Universitá di Padova/ESA.
Feillet, D., Dejax, P., Gendreau, M., Traveling salesman problems with profits. Transp. Sci. 39:2 (2005), 188–205, 10.1287/trsc.1030.0079.
Forgan, D.H., Papadogiannakis, S., Kitching, T.D., The effect of probe dynamics on galactic exploration timescales. arXiv: Popular Physics, 2012.
Forward, R.L., Roundtrip interstellar travel using laser-pushed lightsails. J. Spacecr. Rocket. 21:2 (1984), 187–195, 10.2514/3.8632.
Forward, R.L., Feasibility of interstellar travel: a review. Acta Astronaut. 14 (1986), 243–252, 10.1016/0094-5765(86)90126-8.
Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 20 (2014), 291–328, 10.1007/s10732-014-9242-5.
Gilster, P., Centauri Dreams: Imagining and Planning Interstellar Exploration. 2004, Springer, New York, NY.
Golden, B.L., Levy, L., Vohra, R., The orienteering problem. Naval Res. Log. (NRL) 34:3 (1987), 307–318, 10.1002/1520-6750(198706)34:3%3C307::AID-NAV3220340302%3E3.0.CO;2-D.
Gutin, G., Punnen, A.P., The Traveling Salesman Problem and Its Variations. 2007, Springer https://doi.org/10.1007/b101971.
Hein, A.M., Long, K.F., Fries, D., Perakis, N., Genovese, A., Zeidler, S., Langer, M., Osborne, R., Swinney, R., Davies, J., Cress, B., Casson, M., Mann, A., Armstrong, R., The andromeda study: a femto-spacecraft mission to alpha centauri. arXiv, 2017 preprint arXiv:1708.03556.
Heller, R., Hippke, M., Deceleration of high-velocity interstellar photon sails into bound orbits at α Centauri. Astrophys. J. Lett., 835(2), 2017, L32, 10.3847/2041-8213/835/2/L32.
Heller, R., Hippke, M., Kervella, P., Optimized trajectories to the nearest stars using lightweight high-velocity photon sails. Astron. J., 154(3), 2017, 115, 10.3847/1538-3881/aa813f.
Izzo, D., Märtens, M., Öztürk, E., Kisantal, M., Konstantinidis, K., Simoes, L., Yam, C.H., & Hernando-Ayuso, J., 2019. GTOC-X: Our Plan to settle the Galaxy (ESA-ACT).
Kovalevsky, J., Seidelmann, P., Fundamentals of Astrometry. 2004, Cambridge University Press, Cambridge https://doi.org/10.1017/CBO9781139106832.
Lebert, J., Optimal Strategies for Exploring Near-by Stars. 2021, Technische Universität München.
Liang, Y.C., Smith, A.E., An ant colony approach to the orienteering problem. J. Chin. Inst. Ind. Eng. 23:5 (2006), 403–414, 10.1080/10170660609509336.
Lindegren, L., Hernández, J., Bombrun, A., Klioner, S., Bastian, U., Ramos-Lerate, M., Torres, A.d., Steidelmüller, H., Stephenson, C., Hobbs, D., Lammers, U., Biermann, M., Geyer, R., Hilger, T., Michalik, D., Stampa, U., McMillan, P.J., Castañeda, J., Clotet, M., Vecchiato, A., Gaia data release 2-the astrometric solution. A & A, 616, 2018, A2, 10.1051/0004-6361/201832727.
Long, K.F., Deep Space Propulsion. 2012, Springer, New York, NY https://doi.org/10.1007/978-1-4614-0607-5.
Long, K.F., Obousy, R.K., Tziolas, A.C., Mann, A., Osborne, R., Presby, A., Fogg, M., PROJECT ICARUS: Son of Daedalus, flying closer to another star. arXiv, 2010 preprint arXiv:1005.3833.
Luo, Y.Z., Shen, H.X., Huang, A.Y., Zhang, T.J., Zhu, Y.H., Li, Z., Yang, Z., GTOC X: Results and Methods of, 2019, National University of Defense Technology and Xi'an Satellite Control Center. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference.
Messerschmitt, D., Lubin, P., Morrison, I., Interstellar flyby scientific data downlink design. arXiv, 2023 preprint arXiv:2306.13550.
Moir, R.W., Barr, W.L., Analysis of interstellar spacecraft cycling between the Sun and the near stars. J. Br. Interplanet. Soc. 58 (2005), 332–341.
Moon, D.I., Park, J.Y., Han, J.W., Jeon, G.J., Kim, J.Y., Moon, J., Choi, Y.K., Sustainable electronics for nano-spacecraft in deep space missions. 2016 IEEE International Electron Devices Meeting (IEDM), 2016, IEEE, 31–38 https://doi.org/10.1109/IEDM.2016.7838524.
Parkin, K.L., The breakthrough starshot system model. Acta Astronaut. 152 (2018), 370–384, 10.1016/j.actaastro.2018.08.035.
Parkin, K.L., A starshot communication downlink. arXiv: Instrum. Meth. Astrophys., 2020, 10.48550/arXiv.2005.08940.
Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L., A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225:1 (2013), 1–11, 10.1016/j.ejor.2012.08.015.
Radford, T., Stephen Hawking and Yuri Milner launch $100m star voyage. Available at:, 2016, The Guardian https://www.theguardian.com/science/2016/apr/12/stephen-hawking-and-yuri-milner-launch-100m-star-voyage.
Scholz, M., Die Physik der Sterne. 2018, Springer Spektrum Berlin, Heidelberg https://doi.org/10.1007/978-3-662-57801-8.
Stephenson, D.G., Models of interstellar exploration. Q. J. R. Astron. Soc. 23 (1982), 236–251.
Tan, C., Xu, Y., Luo, R., Li, Y., Yuan, C., Low Earth orbit constellation design using a multi-objective genetic algorithm for GNSS reflectometry missions. Adv. Space Res. 71:5 (2023), 2357–2369, 10.1016/j.asr.2022.10.035.
Valdes, F., Freitas, R.A., Comparison of reproducing and nonreproducing starprobe strategies for galactic exploration. Br. Interplanet. Soc. J. (Interstellar Stud.) 33 (1980), 402–406.
Weisstein, E., n.d. Sphere Point Picking. Available at: https://mathworld.wolfram.com/SpherePointPicking.html.
Zeng, X., Alfriend, K.T., Li, J., Vadali, S.R., Optimal solar sail trajectory analysis for interstellar missions. J. Astronaut. Sci. 59 (2012), 502–516, 10.1007/s40295-014-0008-y.