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Abstract

In the past decade, the discovery of exoplanets has sparked new interests in the idea of interstellar travel and exploration. Despite
various proposals for probe concepts and relevant technologies, there is a lack of extensive literature on viable exploration strategies
for journeys beyond a single star system. Such exploration strategies might not only have implications on technology development strate-
gies for achieving interstellar exploration but could also enrich existing models for galactic exploration feeding into solutions of the
Fermi Paradox. This article presents optimal strategies for the exploration of a large number of near-by stars, using a dedicated, novel
methodology, which sets it apart from existing literature: For the first time, the mission design problem of interstellar exploration is rede-
fined as a bi-objective multi-vehicle open routing problem with profits. It is tackled by an adapted hybrid multi-objective genetic algo-
rithm, which is further improved and modified according to the problem characteristics (e. g. large search space). The overall mission
model assumes probes traveling on straight trajectories, utilizing flybys, and maintaining an average velocity of 10% of the speed of light.
Surpassing prior research that typically relies on statistical models or restricted star data, the star models are founded on the second Gaia
data release (Gaia DR2), which represents the most extensive star catalogue to the date of this study and is employed for the first time in
the context of interstellar exploration. The resulting star model contains a maximum of 10,000 stars within a spherical region around Sol,
covering a distance of 110 light years.

It is found, that the number of explored stars J 1 scales with mission duration J 2 and probe number m according to J 1 � J 2 m0:66,
which provides an initial guidance for future interstellar mission design. Furthermore, the routes and selection of stars vary depending
on the number of probes used: When conducting missions with a large number of probes, stars in close proximity to the Solar System are
given more focus. On the other hand, missions with a small number of probes include more distant stars to facilitate shorter transfers
along the route. Based on these findings, the following recommendations for interstellar exploration strategies can be drawn: When
energy resources such as fuel reserves are scarce and the exploration mission is not limited to nearby stars, low probe numbers are more
efficient. In contrast, high probe numbers enable faster exploration of nearby stars but involve less resource-efficient transfers, making
them a suitable option for small, remotely propelled probe concepts. To address crowding effects in high probe number missions, swarm-
based probe concepts are recommended based on the scaling law characteristics derived.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the recent decade, the increasing number of discov-
ered exoplanets has revived discussions on interstellar tra-
vel and exploration. The Breakthrough Starshot program
is likely the most well-known example, having been
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1 The Global Trajectory Optimization Competition (GTOC) is a
recurring event, occurring approximately every 1–2 years, that challenges
the global research community with trajectory design problems.
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launched only a few months before the announcement of
an exoplanet detected in the Alpha Centauri system in
2016 (Radford, 2016; European Southern Observatory,
2016). This program involves a gram-scale probe (= probe
with a mass on the order of grams), which is accelerated by
a laser-driven lightsail to 20% of the speed of light (Parkin,
2018). At that velocity, the probe could reach the Alpha
Centauri system in 20 years. Assuming that the current
trends continue and gain more momentum, it is likely that
the concept of interstellar travel will become less hypothet-
ical and speculative in the coming decades, particularly for
uncrewed probes.

However, numerous challenges need to be overcome for
interstellar spaceflight to become a reality, beginning with
the design and development of a propulsion system capable
of reaching near-relativistic velocities. There is already a
range of suitable technologies discussed in the literature
(see Long (2012) for an overview). For instance, the afore-
mentioned Breakthrough Starshot concept relies on a laser
beam, that exerts a max. force of 520 N to achieve a max.
acceleration of 14,900 g on the lightweight sailcraft. The
overall acceleration process, after which the probe reaches
20% of the speed of light, is planned to last for 9 minutes
(Parkin, 2018). Very differently, in Project Daedulus
nuclear pulse rockets are employed over a boost period
of almost 4 years, generating thrust in the orders of 105–
106N to achieve a coast velocity of 12% of the speed of light
(Bond et al., 1978).

According to the different propulsion techniques, the
interstellar probe concepts proposed in the literature vary
greatly in scale, covering nanoprobes with few grams
(Kulkarni et al., 2018) as well as giant spacecraft with a
mass of several tons (Forward, 1984) or even thousands
of tons (Bond et al., 1978). Such heavy-weighted spacecraft
would enable extensive instrumentation for conducting sci-
entific research, with major benefits anticipated in the fields
of stellar astrophysics, planetary science, astrobiology, and
interstellar medium studies (Crawford, 2009). For example,
the 3-ton payload foreseen in Project Longshot (Beals
et al., 1988) allows for various scientific investigations
already during the journey itself (using particle detectors)
and later upon arrival at the target star system. This
involves characterizing the star system and the thermal
environment of potential planets (using IR imagers and
UV telescopes), as well as determining their composition
through spectrophotometry. Subject to stricter payload
constraints, smaller and lightweight nanoprobes can be
equipped with a micro-electromechanical systems (MEMS)
� based sensor package including a spectrometer and a
small camera (Hein et al., 2017), which at least enable
visual imaging of the target star system. Potential impacts
of relativistic effects on such imaging systems have been
investigated by Zhang and Li (2018): For velocities as
envisaged in Breakthrough Starshot (max. 20% of the
speed of light), mild relativistic effects are predicted, mani-
festing in a maximum Doppler factor of 1.2247. Conse-
quently, this could result in either a positive or negative
416
frequency shift of 22%, depending on the direction of rela-
tive motion.

Sending the gathered scientific data and images back to
Earth poses another challenge, which is discussed by
Messerschmitt et al. (2023) in the context of limited mass
budgets. For Breakthrough Starshot, Parkin (2020) pro-
posed a 100 W laser as transmitter and a 30 m telescope
as the receiver. While this setup would enable significant
image and data transfer (estimated raw data rate of 8–50
Gbit/year), aperture and power assumptions exceed cur-
rent technological capabilities. Conversely, for heavier
spacecraft such as Project Daedalus, the development of
suitable communication systems was already deemed prac-
ticable in the late 1970s (Bond et al., 1978).

There is a number of further technological aspects
addressed in literature related to interstellar travel and
exploration, such as the potential contribution of artificial
intelligence (Hein and Baxter, 2018), replicability (Borgue
and Hein, 2021; Stephenson, 1982) and the feasibility of
interstellar spaceflight in general (Forward, 1986). Some
studies also include roadmaps (Elachi et al., 1996;
Gilster, 2004) and propose missions to a single destination,
mostly considering regions beyond the heliopause (Zeng
et al., 2012) or near-by stars such as Tau Ceti (Baumann,
2015), the Alpha Centauri star system (Hein et al., 2017;
Forward, 1985; Cohen et al., 2019) or Barnard’s star
(Bond et al., 1978). However, there exist only a limited
number of studies that develop strategies for exploring a
significant amount of star systems or a sequence of systems.
Most of them are based on very basic and simple assump-
tions about the spacecraft type (Cartin, 2013), the star sys-
tems (Bjoerk, 2007; Cotta and Morales, 2009) and the
optimization technique (Valdes and Freitas, 1980; Forgan
et al., 2012; Cotta and Morales, 2009). A range of
advanced optimization methods were applied in the con-
text of the Global Trajectory Optimization Competition1

(GTOC) X, which focused on settling the galaxy. This
includes concurrent tree search (Izzo et al., 2019),
breadth-first search algorithms (Zhang et al., 2019), or a
combination of different techniques, such as differential
evolution and Ant Colony Optimization (Luo et al., 2019).

However, there is no further analysis of how probe tech-
nology and mission architecture impact the exploration
strategy. Star systems are often assumed to have a simple
spatial distribution and are not classified according to their
properties such as the likelihood of hosting planets, rather
than using actual observation data. This article seeks to
expand on previous work by employing current knowledge
of nearby star systems and sophisticated optimization algo-
rithms to develop new interstellar exploration strategies
using a dedicated, novel methodology, which sets it apart
from existing literature: The novel methodology comprises
the classification of interstellar exploration as an optimiza-
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tion problem, which has not done before in that context.
Furthermore, unlike earlier research that relied on simplis-
tic star models or limited data, this study utilizes the Gaia
Data Release 2 (Gaia DR2) to construct a star model of the
solar neighborhood. This application of Gaia DR2, the
most extensive star catalogue available at the time of this
study,2 represents a pioneering step in the field of interstel-
lar exploration. Ultimately, an optimization algorithm is
employed to solve the problem, based on a well-
established method and customized for the specific nature
of the problem to enhance solution quality.

The article is organized as follows: Chapter 2 describes
the used methods, starting with the definition and classifi-
cation of the problem of exploring various star systems
before the optimization models and the optimization algo-
rithm are presented. Chapter 3 covers the main results that
are obtained after applying the algorithm to the problem
based on the described models. The results are discussed
in chapter 4 with respect to their limitations and implica-
tions for possible exploration strategies.

The article is based on a Master thesis, which was car-
ried out through a collaboration between the Initiative
for Interstellar Studies and the Technical University of
Munich. The thesis is available online for further reading
(Lebert, 2021), as this article represents a summary of the
main ideas and results.

2. Methods: Problem classification, models and optimization

algorithm

2.1. Defining interstellar exploration as bi-objective multi-

vehicle open routing problem with profits

We consider a (future) scenario, where humankind is
technically capable of launching several probes simultane-
ously from Earth with the aim of exploring various star
systems in the solar neighborhood. Each probe is assigned
one or more star systems, which will be explored sequen-
tially, representing a stellar route. The focus is on the selec-
tion of suitable star systems, along with the number of
probes, as these factors are essential for designing a suit-
able mission architecture.

In this section, the problem of the exploration of various
star systems is reduced to its minimum set of variables,
which are then used to classify and define the considered
problem.

The classification and abstraction of the problem pro-
vide access to a large pool of potential optimization meth-
ods. By contrast, there exists only limited research on
advanced optimization methods specifically applied to
interstellar exploration, encompassing advanced methods
and algorithms for optimizing interstellar missions.
2 Note that there is already an updated Data Release (Gaia DR3), which
was not available yet at the time of this study.
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2.1.1. Problem variables and parameters

Given the high number of parameters, the problem can-
not be modeled in its entire complexity. Therefore, the min-
imal set of parameters to describe the problem of
interstellar exploration is identified. From a technical per-
spective, the parameters involved with interstellar explo-
ration can be subdivided into three groups, which are
probe concept and technology (e. g. thrust, probe mass,
probe velocity), mission architecture and design (e. g.
probe number, star selection, travel time), and star system
characteristics (e. g. star location, luminosity). In our con-
sidered minimal set of parameters, each group is repre-
sented by at least one parameter. For instance, from the
parameter group of probe concept and technology, we
selected the average velocity of the probe, as it contains
implicitly other parameters such as acceleration or deceler-
ation characteristics and cruise velocity of the probe. Other
parameters such as probe mass are not included, which
entails the advantage that the results are valid for various
probe concepts.

Fig. 1 shows the considered set of parameters, each
parameter is colored according to its foreseen role within
the optimization context. The arrows indicate the impact
of the parameters, e. g. the star sequence determines both
the mission duration and the mission return. As repre-
sented by the different colors, there are three types of
parameters in terms of optimization:

� Input parameters (orange): Parameters, that must be
provided externally
o Average velocity: The average travel velocity of the

probe
o Star data: All information on the stars, e. g. star

locations
o Available probe number: The number of probes

which can be deployed for fulfilling the mission

� Objectives (blue): Variables, that are considered as opti-
mization goals
o Mission duration: Duration of the entire mission
o Mission return: Sum of rewards earned during the

mission

� Decision variable (green): Variable, that is determined
by the optimization algorithm by solving the problem
for the selected objectives
o Star sequence: Selection and order of stars that are

explored by the probes
2.1.2. Optimization problem class identification

From an abstract perspective, the task consists of select-
ing subsets of locations with assigned rewards si and orga-
nizing them into routes (as depicted in Fig. 2), with the
objective of maximizing the total reward while minimizing
the time required to complete the route.



Fig. 1. Parameters considered within the optimization context, color scheme according to each element’s role in the optimization.
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Assuming a single route, the problem is very similar to
the Traveling Salesman Problem (TSP) (Davendra, 2010)
and specifically to some of its variations (Gutin and
Punnen, 2007), e. g. the TSP with profits (Feillet et al.,
2005), tourist trip design problem (Gavalas et al., 2014),
vehicle routing problem (Pillac et al., 2013; Dantzig and
Ramser, 1959) or orienteering problem (Golden et al.,
1987). Accounting for moving locations over time would
be analogous to the time-dependent TSP (applied in the
case of space debris removal by Zhang et al. (2022)) which,
for simplicity, is not considered in this study but potentially
of interest for future research.

The creation of multiple routes that are traversed con-
currently by a fleet of vehicles leads to a slightly different
type of problem that closely resembles the team-
orienteering problem (Chao et al., 1996; Bederina and
Hifi, 2017). However, there are two main differences that
set it apart from the aforementioned problems, despite
their apparent similarities:

� Most classical approaches use duration as a constraint
representing a time budget, rather than as an objective,
resulting in a single-objective problem (e. g. orienteering
problem). This means that two routes with the same
profit but different durations are equally valued if both
are completed within the given time budget. However,
as the duration of the route is more critical in the explo-
Fig. 2. Problem visualization: From a number of locations with reward si, sever
in green).
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ration context, we consider it as the second objective in
addition to the total reward, resulting in a bi-objective
problem.

� Unlike many routing problems or orienteering prob-
lems, there is no requirement to specify a fixed destina-
tion, known as a depot, where each participant or
vehicle must end its route. This feature characterizes
the problem as an open routing problem, allowing par-
ticipants or vehicles to conclude their routes at any
desired destination.

Based on the explanations provided, the problem can be
classified as a bi-objective multi-vehicle open routing problem

with profits.

2.1.3. Mathematical formulation of the bi-objective multi-
vehicle open routing problem with profits

Note that the problem shares many similarities with the
one presented by Bederina and Hifi (2017), which is why
most of the definitions used here are adopted from that
source. The differences between both approaches are stated
in Table 1 along with the corresponding equations.

Assume a connected graph G ¼ V ;Eð Þ with nodes
V ¼ 1; � � � ; nf g and edges E that connect pairs of nodes i
and j. For the considered problem, the nodes and edges
represent the stars and the possible transfers between the
stars, respectively (see Fig. 3).
al destinations are picked and organized into routes (route 1 in red, route 2



Table 1
Problem formulation � differences to original approach and corresponding equations.

Original formulation (Bederina and Hifi, 2017) Problem as presented here Affected equations

Start from node 1 (‘‘start depot”) Start from node 0 (Solar System) Eq. (8)
Eq. (9)
Eq. (10)
Eq. (11)
Eq. (12)
Eq. (13)

Common final target destination n (‘‘arrival depot”) Open final target choice

Optimization w.r.t. overall route duration (sum of route durations) Optimization w.r.t. maximum route duration of a mission
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Each node i offers a score si, that reflects the value of the
star system and is added to the total mission return when a
probe arrives there. The time required to travel along an
edge i; jð Þ is represented by tij. It can be calculated from
the distance dij and travel velocity v:

tij ¼ dij

v
ð1Þ

Additionally, the binary decision variable xijp is defined. It
takes the value of 1 if the edge i; jð Þ is traversed on a route
p:

xijp ¼
1; if i; jð Þ 2 p

0; otherwise

�
ð2Þ

Analogously, the variable yip specifies if a star i is element

of p, which means if a star is visited or not:

yip ¼
1; if star i 2 p

0; otherwise

�
ð3Þ

The variable uip indicates where a star i is positioned within
a route:

uip ¼
position of star i in p; if i 2 p

0; if star i R p

�
ð4Þ

The objective function J 1 is equivalent to the mission
return and calculated as follows:

J1 ¼
Xm
p¼1

Xn
i¼1

yipsi ð5Þ

In this equation, m denotes number of available probes and
n represents the number of stars.

The objective function J 2 is equivalent to the duration of
the mission, which is determined by the longest travel time
for one route:

J2 ¼ max
Xn
i¼0

Xn
j¼1

tijxijp

 !
; p ¼ 1; � � � ;mf g ð6Þ

Hence, if several probes are deployed within one mission,
the mission duration is determined by the travel time of
that probe that is assigned to the longest route. The over-
arching goal is to maximize the mission return while mini-
mizing the mission duration.

Mathematically, the optimization problem can then be
formulated as follows:
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Z ¼ max
J1

�J2

� �
ð7Þ

Subject to:

Xm
p¼1

Xn
i¼1

x0ip � m ð8Þ

Xm
p¼1

ykp � 1 8 k ¼ 1; � � � ; n ð9Þ

Xn
j¼1

xijp ¼ yip; i ¼ 1; � � � ; nf gn wf g; p ¼ 1; � � � ;mf g ð10Þ

Xn
j¼0

xjip ¼ yip; i ¼ 1; � � � ; nf g; p ¼ 1; � � � ;mf g ð11Þ

Xn
i¼0

Xn
j¼1

tijxijp � Tmax; p ¼ 1; � � � ;mf g ð12Þ

uip � ujp þ 1 � n 1� xijp

� �
; i; j ¼ 1; � � � ; nf g; p ¼ 1; � � � ;mf g

ð13Þ
Eq. (8) limits the number of probes launched from the
Solar System to a maximum of m. Eq. (9) ensures that a
star cannot be visited more than once within a mission.
Eq. (10) and Eq. (11) check for continuity, which means
they guarantee that the number of vehicles entering a star
system is equivalent to the number of vehicles exiting it.
This effectively rules out the chance of replication. It is
pointed out that continuity is not a requirement when a
probe arrives at the final star w of its route. To handle this
particular situation, w is removed from the input set of i in
Eq. (10). This approach differs from the original one where
all routes have a common final destination. The maximum
total travel time of a probe is limited by the time constraint
set in Eq. (12). Eq. (13) prevents the formation of subcycles
for a given probe.

2.2. Description of the optimization models

The description of the optimization models concerns
mainly the parametrization and definition of the input
parameters, which have been introduced above. Given
the problem nature, we distinguish between a common
probe and mission model, which includes the relevant
assumptions on probe and mission architecture, and a star



Fig. 3. Sketch of a graph with five nodes and corresponding edges (for better clarity not all edges are numbered).
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model, which provides all relevant information on the envi-
ronment (in particular the star data).
2.2.1. Probe and mission model assumptions
As a first assumption, the mission architecture is

restricted to flybys without considering rendezvous. This
constraint limits the scientific value of the mission substan-
tially, however, the mission is still valuable, as flybys can be
used for the initial reconnaissance of planets (Crawford,
2009). As part of the flybys, the probes are allowed to take
arbitrary course corrections, which means that the deflec-
tion angle of the trajectory around the target star is not
limited. Additionally, the probes cannot replicate or mal-
function, ensuring that the number of probes used, denoted
by m, remains constant throughout the mission. The probes
are assumed to fly at an average velocity vaverage of 10% of
the speed of light which is consistent with literature propos-
als (Bjoerk, 2007; Valdes and Freitas, 1980). This velocity
limit is chosen to enable interstellar travel within a reason-
able timeframe, while also ensuring that relativistic effects
do not significantly affect the probe’s trajectory: With a
Lorentz factor of approximately 1.005, the effects of time
dilation and length contraction are less than 1%
(Kovalevsky and Seidelmann, 2004) and thus negligible
in the modeling context. Transfer trajectories between
two stars are assumed to occur on rectilinear orbits, as sug-
gested by Fantino et al. (2004).
2.2.2. Star model based on Gaia Data Release 2

To parametrize the star model with the required data,
the Gaia Data Release 2 (Gaia DR2) is selected, as it is
considered as the most complete and accurate star cata-
logue at the time of this study. As Gaia DR2 contains spu-
rious data (Lindegren et al., 2018), a filter procedure
consisting of several steps is applied to obtain a clean data-
set of stars (illustrated in Fig. 4). The filtering follows the
approach suggested by Lindegren et al. (2018). It consists
of several steps, where sources are first eliminated based
on parallax errors and uncertainties in BP and RP fluxes.
Further filter steps involve the unit weight error and the
flux excess factor. For details, refer to Lindegren et al.
(2018).

In Fig. 4, the left plot contains the initial, raw dataset
with the nearest 25,000 stars which is obtained from ESA
(2018) by using the distance estimates from Bailer-Jones
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et al. (2018). In the right plot, the filtered dataset is illus-
trated, containing the 10,000 nearest stars (again based
on the distance estimates from Bailer-Jones et al. (2018))
and representing a spherical domain with roughly 110 ly
radius around Sol.

For simplicity, the stars are assumed to maintain fixed
positions. This assumption can be demonstrated to be
applicable for constrained mission durations of 7,000 years
by comparing the impact of stellar motion on future star
positions with the uncertainties present in current star posi-
tion estimations: Assuming an orbital velocity with respect
to the galactic center of 230 km/s near Sol (Brown, 2016)
and considering a timeframe of 7,000 years, the max. posi-
tional change due to stellar motion is estimated to be
within a few light years. The current stellar position estima-
tions by Bailer-Jones et al. (2018) inherently entail uncer-
tainties which at maximum can be expected in a similar
order of magnitude for the considered star set (Lebert,
2021). Hence, incorporating stellar motion in the model
would not significantly improve model accuracy, while
requiring substantially increased modelling and computa-
tional effort. This holds particularly for shorter timeframes
(e.g., 1,000 years), where the impact of stellar motion is one
order of magnitude smaller compared to the uncertainties
in current star estimations.

The model assumption of fixed stars will induce a time
constraint in the optimization, which limits the maximum
time of a mission to 7,000 years (Eq. (12) in chapter
2.1.3). Note that hypervelocity stars are not considered in
the model, given the lack of knowledge and presumable
rare occurrence (Boubert et al., 2018).
2.3. Adapted hybrid multi-objective genetic algorithm

2.3.1. Algorithm selection
Due to the large model size (max. 10,000 stars), any

algorithm based on enumeration can be ruled out before-
hand. Branch and bound methods are not appropriate, as
their runtime grows exponentially with the size of the prob-
lem (Boyd et al., 2003); at worst their performance is iden-
tical to the enumeration approach (Dolgui and Gafarov,
2019). With respect to GTOC X, ESA proposed a concur-
rent tree search algorithm (Izzo et al., 2019), which we did
not consider due to the lack of a suitable growth metric in
our case. Population-based algorithms can be useful for



Fig. 4. Left: Selection of nearest 25,000 stars from Gaia DR2 � Right: nearest 10,000 stars after filtering procedure.
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analyzing the bi-objectivity of the problem since they pro-
vide a set of solutions (Pareto front), instead of a single
solution. For instance, Tan et al. (2023) utilize a multi-
objective genetic algorithm for designing global navigation
satellite system reflectometry missions in low Earth orbit.
Considering traditional orienteering problems which are
solved with population-based algorithms, various types
are used, e. g. Particle Swarm Optimization (PSO) (Dang
et al., 2013), Ant Colony Optimization (ACO) (Liang
and Smith, 2006) or genetic algorithms (Bederina and
Hifi, 2017). Given its strong similarity to the problem pre-
sented here, a hybrid genetic algorithm as proposed by
Bederina and Hifi (2017) is ultimately chosen. Any other
population-based algorithm, PSO or ACO, might be used
alternatively.

2.3.2. Genetic encoding of the problem
Inspired by evolutionary process in nature, the genetic

algorithm is based on chromosomes, genes, populations
and generations. This requires a genetic encoding of the
problem and its terms, as depicted in Fig. 5.

A chromosome represents a potential solution to the
given problem, which can be viewed as a proposed mission
plan. The chromosome is composed of multiple genes,
where each gene represents a sequence of stars that a probe
will explore during the mission. A group of chromosomes
constitutes a population, which is why a chromosome is
also denoted as an individual. Since the population varies
over time through an evolutionary process, each popula-
tion is associated with a particular generation.

2.3.3. Optimization procedure and pseudocode

The implemented algorithm largely adheres to the
methodology outlined by Bederina and Hifi (2017) with
few adaptions which are explained hereafter. The method,
referred to as hybrid multi-objective evolutionary algo-
rithm, merges the idea of the Non-Dominated Sorting
Genetic Algorithm (NSGA-II) with a set of local search
techniques. The concept and essential operations of the
genetic algorithm are shown in Fig. 6.
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In the beginning, an initial population is created by ran-
domly assigning unexplored stars to the probes of an indi-
vidual until either the maximum mission duration Tmax is
exceeded or all stars are allocated to a route. Afterwards,
three functions, which build the evolution loop, are exe-
cuted: The first step is to select parents, which are then uti-
lized to produce offspring. The population is then evolved
using these children, creating a new generation which
serves as the pool for selecting the next set of parents. As
per the previously introduced evolutionary terminology,
one iteration of the loop is considered as one generation.
The loop is exited either after a predetermined number of
generations or earlier if the solution is deemed to have con-
verged. By following the functions of the main loop are
explained briefly, for a more detailed explanation please
see the corresponding chapter on the algorithm description
from Lebert (2021).

2.3.3.1. Selection of parents. The parent selection process
involves a tournament procedure (Fig. 7), where individu-
als are randomly arranged in pairs and evaluated based
on two criteria: The Pareto rank and the crowding
distance.

The Pareto rank of an individual solution is determined
by the number of dominating solutions. Dominating solu-
tions provide either a higher mission return in the same or
in a shorter time or the same mission return in a shorter
time. The more dominating solutions, the higher the Pareto
rank of the considered solution. For instance, individuals
with rank 0 are non-dominated and build the Pareto front
(see Fig. 8).

The crowding distance serves to promote solutions in
less crowded, unexplored regions from the search space.
Its idea can be imagined by a cuboid around an individual
i, which is confined by the neighboring individuals i� 1
and iþ 1. The normalized side length of this cuboid is
equal to the crowding distance of i.

The pseudocode in Fig. 9 shows the calculation proce-
dure of the crowding distance.



Fig. 5. Evolutionary Algorithm terminology and encoding of exploration mission terms.

Fig. 6. Overview and main functions of the genetic algorithm.
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In step (1), the count of individuals, denoted as l, is
determined, constituting the subpopulation I correspond-
ing to a given Pareto rank. In step (2), the crowding dis-
tance variable I i½ �distance is initialized, with each
individual’s value being set to 0. Moving to step (3), a loop
is initiated to calculate the crowding distance for each
objective Jm. Since there are two objectives (mission return
Fig. 7. Overview of the to
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and duration), the loop (3) – (7) is executed twice. Step (4)
involves sorting individuals in ascending order based on
the objective Jm. For instance, if Jm represents mission
return, the individual with the lowest return occupies the
first position, while the one with the highest return is placed
at the end. In step (5), the individuals at the first and end
position receive an infinite crowding distance value. This
ensures that boundary points are retained for subsequent
generations, as individuals with higher crowding distance
values are favored during the tournament.

Step (6) initiates another loop, which determines the
crowding distance value for the other individuals by mea-
suring the distance to the two neighboring individuals for
a given individual I i½ � and normalizing the result based
on the maximum distance within the considered subpopu-
lation. This normalization method deviates from the origi-
nal procedure described in Deb et al. (2002) and aims to
achieve a more balanced weighting between distances for
each objective (see Lebert (2021) for more details). If there
is an existing crowding distance value related to previous
objectives (e. g. mission duration), the newly calculated
urnament procedure.
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value from the different objective (e. g. mission return) is
directly added.

The tournament regulation is as follows: Individuals
with lower Pareto rank win against individuals with higher
Pareto rank. In case of equal Pareto ranks, the individual
with the higher crowding distance wins. The winning chro-
mosomes build the parent population and are utilized to
create offspring.
2.3.3.2. Generating children. To generate children, two
random chromosomes from the parent population replicate
their genes and perform a crossover operation (see Fig. 10).
Through the crossover operation, the children are able to
inherit the best genes from both parents, resulting in each
child receiving an additional gene from the other parent.
To evaluate the genes, the fitness ratio is utilized, which
is simply the ratio of both objectives:

r ¼ J1

J2

ð14Þ

The higher the fitness ratio, the more mission return is
obtained per time, which is why the gene with the highest
fitness ratio is rated as the best one.

After the crossover, some gene entries may appear more
than once in the chromosome, which could cause certain
stars to be visited multiple times by different probes
throughout the mission. To avoid this scenario, the dupli-
cate elements are eliminated from the inherited gene while
the crossover gene remains unchanged.

Due to the crossover operation, the children obtain an
additional gene, which violates the limit of available
probes. To restore the original number of genes, a repair
function is implemented, where the worst gene (with the
lowest the fitness ratio) is eliminated.

Some of the children that are randomly selected based
on the mutation rate rmut will undergo a mutation proce-
dure. Depending on probabilistic rates ri, different opera-
tions are applied, which are partial swapping (rswapÞ,
Fig. 8. Pareto front built from
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merging the two shortest routes rmerge
� �

, splitting the long-

est route (rsplit) and shuffling of the routes (rshuffle).
After the mutation, all children are checked with respect

to their individual route length to account for the time con-
straint Tmax. This is done by a cut operation which removes
the last stars from routes that violate the time constraint.
However, as we found that the solution quality suffers from
setting Tmax ¼ 7; 000 y from the beginning, a dynamic time
constraint and stepwise cutting procedure is used: It con-
sists of starting with unconstrained route lengths
(Tmax;g¼0 ¼ 1) and activating the time constraint in two
steps (after gcut1 and gcut2 generations), where
Tmax;g¼gcut2 ¼ 7; 000 y to ensure valid solutions at the end
of the optimization.

Finally, an improvement procedure is applied to each
child in order to balance the travel time between the routes.
This is achieved through either filling all the routes, except
for the longest one, with unexplored stars until it matches
the longest route’s travel time, or by trimming each route,
except for the shortest one, to the same duration as the
shortest route’s travel time. The decision between filling
or trimming is made based on a probabilistic rate rimp cut.

The aforementioned process of generating offspring is
iterated until the size of the offspring population meets a
specified threshold determined by the crossover rate,
denoted as rcross. As an example, if rcross ¼ 1, then the num-
ber of offspring generated will be the same as the size of the
original population. Therefore, once the populations are
combined, the total population size is doubled, necessitat-
ing an additional step to reduce the population size to
the desired limit of Pmax. This is done in the evolving
procedure.
2.3.3.3. Evolving population. In the evolving process, the
succeeding generation’s population is composed sequen-
tially with individuals from the existing population until
the maximum population size, Pmax, is attained. The funda-
non-dominated solutions.



Fig. 9. Pseudocode for crowding distance calculation (from Deb et al. (2002), adapted).

Fig. 10. Replication and crossover operation: Each parent shares its best route (based on fitness ratio r) with each child; duplicates in the other inherited
routes are removed.
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mental mechanism, which employs Pareto rank and crowd-
ing distance, is depicted in Fig. 11.

Individuals with the lowest Pareto rank (F 1 in Fig. 11)
are added first to the evolved population, preceding indi-
viduals with higher ranks. When the population limit is
nearly approached, individuals with critical rank (F 3 in
Fig. 11) are picked depending on the crowding distance.
As before, individuals with high crowding distance are pri-
oritized. When the maximum population size is attained,
the remaining individuals from the critical rank with lower
crowding distance and those with higher Pareto ranks (F 4

upwards in Fig. 11) are discarded.

2.3.3.4. Local search. The local search procedure com-
prises five different operations, that are executed after a
fixed number of generations rlocal search throughout the
entire population:

A) One-point: A star is randomly selected and moved to
a different position along the route.

B) Two-points: Two random stars from the same route
exchange their position.
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C) Two-opt: A randomly selected segment of the route is
reversed.

D) Best insertion: The route is reconstructed based on a
nearest neighbor heuristic.

E) Switch from longest to shortest: The final star from
the longest route is detached and added to the end
of the shortest route.

A)-D) is taken from Bederina and Hifi (2017). E) is an
additional feature to the original algorithm and included
to address the issue of unbalanced route times within an
individual. The idea behind E) is derived from Cotta and
Morales (2009), who implemented a similar local search
technique called l-opt.

Out of this set, one operation is selected randomly for
each individual and then executed on all of its routes. In
general, any changes made to the routes through local
search operations are retained only if they result in an
improved overall solution, which is evaluated using the fit-
ness ratio r.

The procedure of the local search is illustrated in
Fig. 12.



Fig. 11. Evolving procedure based on non-dominated sorting and crowding ranking, F i refers to a subpopulation of individuals with the same Pareto rank
(from Deb et al. (2002), adapted).
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2.3.3.5. Stopping criteria. In its original version the algo-
rithm terminates after a fixed number of generations, disre-
garding the solution’s behavior. To reduce the runtime, a
convergence check after each loop is developed, based on
the average fitness ratio of the current population. The
average fitness ratio is determined by the population size
Pmax and the individual fitness ratios ri:

rmean ¼ 1

Pmax

XPmax

i¼1

ri ð15Þ

The convergence check is realized by monitoring rmean for
200 generations and smoothing out minor fluctuations with
a moving average of size 3. If the ratio between the mini-
mum rmean;min and maximum rmean;max over the given sample
is less than 1%, convergence is assumed. To prevent prema-
ture convergence resulting from being trapped in local
optima, a minimum limit of 300 generations is set. If the
convergence criterion is not met, the algorithm will termi-
nate upon completing the maximum generation number
gmax. Fig. 13 shows the pseudocode of the described opti-
mization algorithm.
3. Model analysis and optimization results

3.1. Preliminary analysis of the spatial star distribution

To obtain a qualitative understanding of the used mod-
els, the stars are first analyzed with respect to their spatial
coordinates (Fig. 14). Because the model domain is spheri-
cal, the analysis is performed using galactic longitude,
galactic latitude, and distance as spherical coordinates. As
a reference, a uniform distribution curve based on
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random numbers is provided in orange. Additionally, the
distance between each star and its nearest neighbor is exam-
ined. Explanations of the approach and figures are given
below:

� Galactic longitude: Stars are counted based on their lon-
gitude, which is divided into 5� intervals ranging from 0
to 360�. The resulting histogram is shown in Fig. 14
upper left.

� Galactic latitude: Based on their latitude, stars are
assigned to intervals with size 2� (range from �90� to
90�). Unlike longitude, the number of stars in a uniform
distribution declines for the latitude values towards the
poles. In Fig. 14, lower left, we adopted an approach
from Weisstein (n.d.) to model a random distribution
of the latitude.

� Distances to Sol: The distribution of the distances to Sol
is investigated based on a cumulative histogram (Fig. 14
upper right). For each distance value, the corresponding
bin in the histogram represents the number of stars that
have a distance smaller than or equal to that value. The
theoretical curve for a random uniform distribution is
given as a reference and has a cubic course because
the spheric volume increases with radius according to
V � r3:

� Minimum transfer distances: The histogram in Fig. 14
lower right shows each star’s distance to its nearest
neighbor. The bin size is 0.25 ly, which means that each
bar in the histogram represents the number of stars that
have a minimum transfer distance falling within a speci-
fic range. For instance, the third bar corresponds to the
number of stars that have a transfer distance between
0.5 and 0.75 ly to their nearest neighbor.



Fig. 12. Illustration of the local search procedure.
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On a qualitative level, the plots of the coordinate his-
tograms suggest that the stars are distributed almost uni-
formly, i. e. without forming clusters. However, apart
from the large number of very short transfers smaller than
0.75 ly, the minimum transfer distances (lower right his-
togram in Fig. 14) appear to follow a Poission distribution.
It is assumed, that the peak for the very short minimum
transfer distances (stars with distances less than 0.25 ly to
their nearest neighbor) is due to the existence of binary
or multiple star systems, since in the Gaia release each star
source is considered as single star (Lindegren et al., 2018).
Under this assumption, over 10% of stars in the model
might belong to binary or multiple star systems. In reality,
multiple star systems are even more common in the Milky
Way, with estimates suggesting that 40–60% of stars form
part of multiple systems (Scholz, 2018, p. 109). The discrep-
ancy between the model and the estimations is believed to
be due to the restricted resolution of the Gaia observations
and the filtering method used: Given that very close binary
systems can lead to erroneous results, these stars are
removed through the filtering process (see Lindegren
et al. (2018) for more details on binaries and multiple star
systems in Gaia DR2).
3.2. Results overview for 10,000 stars

For a first analysis of the results, a set of 9 runs3 is con-
sidered and compared. Between each run, the probe num-
ber m is doubled, starting with m ¼ 2. The star model
contains 10,000 stars, hence the maximum mission return
J 1 is 10,000, assuming each star provides the same reward
si ¼ 1. See Table 2 for a specification of the used
parameters.

Fig. 15 shows the evaluation of the final population for
each run with respect to the objectives. The curves repre-
sent the estimated Pareto front for the considered problem.
3 On a modern processor, the calculation time for one single run ranges
between several minutes to few hours (depending on the probe number
being employed).
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Each dot corresponds to an individual and embodies a
potential exploration mission.

As one would expect from intuition, the mission return
for a given mission duration increases with the probe num-
ber. For a certain range (probe number smaller than 256)
and given mission duration one finds that the incline of
mission return J 1 with probe number m scales roughly with
J 1 � m0:66. This relation has been derived by selecting solu-
tions from the different curves for 2000 years and 4000 years
and evaluating them with respect to the mission return. For
the considered probe number range, the mission return
turned out to increase by an average factor of 1.58, when
the probe number is doubled, resulting in:

J1 2mð Þ
J1 mð Þ � 1:58 ð16Þ

Assuming a power relation J 1 � mx with unknown expo-
nent x, one obtains the following expression:

2mð Þx
mx

� 1:58 ð17Þ

Solving for x yields:

x � 0:66 ð18Þ
Furthermore, there appears to be a linear relation between
both objectives for a given probe number (J 1 � J 2). This
fits well with the preliminary, qualitative analysis of the
spatial star distribution in section 3.1, which revealed an
almost uniform star distribution. Note that there are two
exceptions from the linear relation: The first one is the
curve flattening of run 9 (with 512 probes) as the mission
duration approaches longer timeframes, such as beyond
5000 years. This phenomenon is artificially generated by
limiting the model to 10,000 stars: In case of high probe
number and mission duration (upper right region in the
plot), probes are forced to add also stars with less favorable
transfers, as most of the available stars have already been
explored. In real life, the probes will not run into this issue,
as the number of stars is much higher.

The other departure from the linear trend is observed
again for high probe number runs, but this time for mis-
sions with very short durations. In that region of the curve,



Fig. 13. Pseudocode of the adapted hybrid multi-objective genetic algorithm (the ‘‘%” symbol in the if-condition for performing the local search denotes
the modulo operator).
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Fig. 14. Qualitative analysis of the spatial star distribution in the 10,000 stars model based on histograms.

Table 2
Specification of input data and algorithm parameter.

Input Data

Model size 10,000 stars m [2, 4, 8, 16, . . ., 512]
si 1 vaverage 0.1c

Algorithm Parameter

Tmax;g¼0 1 rcross 1
Tmax;g¼gcut1 100,000 y rimp cut 0.05
Tmax;g¼gcut2 7000 y rloc search 40
gcut1 100 gen. rmut 0.4
gcut2 150 gen. rswap 0.8
gmax 1500 rmerge 0.5
Pmax 200 rshuf f le 0.3
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not all available probes are deployed. Hence, the solutions
obtained from high probe number runs are converging
towards the results from runs with lower probe numbers,
as both effectively use the same probe number.
3.3. Scaling law derivation and analysis

The made observations regarding the dependencies of
probe number, mission duration and mission return can
be condensed into one single equation, denoted as scaling
law:

J1 � J2m
0:66 ð19Þ

Note that this relation holds only in the region of linearity,
hence far from approaching the model limits as explained
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earlier. Furthermore, it is less precise in the case of higher
probe numbers.

Assuming a fixed mission duration J 2, the first and sec-
ond derivative of the mission return J 1 with respect to the
probe number are:

d

dm
J1 � d

dm
m0:66 ¼ 0:66m�0:34 ð20Þ

d2

dm2
J1 � d2

dm2
m0:66 ¼ �0:22m�1:34 ð21Þ

As the exponent is negative in both cases, the derivates
converge to 0 for high probe numbers. Moreover, the first
derivative strictly decreases, since the second derivative is
negative irrespective of the probe number. This means, that
the increase of mission return with probe number is



Fig. 15. Final solutions for different probe numbers: each dot represents one solution.
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reduced continuously, which is comparable to the concept
of diminishing returns: In simple words, diminishing
returns refer to a situation where an increase in the input
results in a decreasing or reduced increase in the output
(Encyclopedia Britannica, n.d.). In the scenario being con-
sidered, the probe number represents the input, while the
mission return represents the output.

Based on a plot of the first derivative (Fig. 16), this
behavior can be concretized. The curve declines strongly
for low probe numbers (e. g. less than 10 probes), followed
by a slower decrease. From these observations, it can be
concluded that in case of very few probes, each additional
probe increases the mission return significantly. However,
with each additional probe being deployed, this effect
diminishes (diminishing returns).
3.4. Star selection and transfer distances analysis

For a more detailed analysis of the algorithm solutions,
two different individuals from the final population are
selected and investigated with respect to their route struc-
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ture. Fig. 17 shows two selected individuals, different colors
in the lower plots indicate different probes.

As illustrated, the route structure in both solutions is
very different, even though they provide roughly the same
mission return J 1: The left plot indicates that the optimal
mission is built from single-target routes with the probes
being sent omnidirectionally towards the nearest stars from
Sol. For the considered mission scenario, the explored stars
are within 20 light years distance from Sol. The mission in
the right plot with 8 probes comprises also more distant
stars. As there are fewer probes available, single-target mis-
sions are not possible anymore which is why longer routes
with appropriate star sequences are constructed.

The described differences in routing structure are also
observed when the transfer distances are analyzed in more
detail. In Fig. 18, a histogram is shown, which compares
the number of transfers with certain distances for two mis-
sions with different probe numbers (4 and 64) but similar
mission return.

The histogram shows that a small probe number enables
shorter transfers. The high probe number scenario, which
consists mainly of single target missions (see again



Fig. 16. Plot of the first derivative of the scaling law with respect to probe
number.
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Fig. 17 left), apparently suffers from the common departure
star system (Solar System), which requires longer initial
transfers. In contrast, the low probe number case enables
more efficient routing due to the chain-like route structure
(see again Fig. 17 right). As a result, the benefit of adding
probes to the mission decreases for high numbers due to
the more distant transfers. This fits well with the observa-
tions that are expressed mathematically in the scaling law
(chapter 3.3, effect of diminishing returns): For low probe
numbers, there are still many nearby stars available, that
can be reached by comparably short transfers from Sol.
Hence, launching another probe will contribute substan-
tially to the overall mission return without impairing the
mission duration.

For very high probe numbers, contrarily, any additional
probe is forced to begin its route with a more distant star,
Fig. 17. Route structure for two selected individuals wit
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as all nearby stars are already assigned to other probes.
More distant stars correspond to longer travel times and
thus lead to an increase in mission duration. Hence, the
gain in mission duration comes at the cost of longer trans-
fers, which makes the deployed probe less efficient.

Notably, the fraction of binary or multiple star systems
being explored (indicated by the very short transfers with
0–1 ly in Fig. 18) is significantly higher in the case of lower
probe numbers. Therefore, small probe number missions
appear to be more appropriate for those systems.

4. Discussion

4.1. Limitations and simplifications

The described methodology is based on various simplifi-
cations and limitations. Those, which are considered as
most important, are summarized in the following, grouped
according to the different methodology elements:

� Assumptions on probe and mission architecture: We
admit that the probe and mission model is simplistic
and represents an ideal case scenario. Simplistic, as the
optimization problem only considers the average travel
velocity of the probe; other parameters, such as probe
mass or relevant subsystems such as communication sys-
tems, for example, antennae back to Earth, are not
included. Ideal, because we do not question the feasibil-
ity of the probe and mission. Based on current technol-
h similar mission return but different probe number.



Fig. 18. Distribution of the transfer distances for selected solutions, each bin represents an interval size of 1 ly.
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ogy, we cannot expect that probes will operate without
failure over timeframes of several hundreds or thou-
sands of years. There is certainly a high degree of auton-
omy required, ideally paired with self-repairing
capabilities, as presented by Moon et al. (2016): They
demonstrated high-temperature based self-healing of
space electronics damaged by ionizing radiation or hot
carrier effects to extend spacecraft lifetime. For future,
more realistic studies, one could also incorporate a fail-
ure probability per light year travelled (as done by
Cartin (2013)), to account for probe failures.
Another significant simplification is the assumption of
straight-lined transfers without limiting the angle
between two subsequent transfer trajectories. At the
considered velocities, however, the possible deflection
angles during flybys are limited (for instance, see Moir
and Barr (2005)), again raising concerns about mission
feasibility. Taking that into account, the results span a
theoretical solution space, visualized as a cone with
the deflection angle as a vertical dimension (see Fig. 19).
Assuming a deflection angle of 0�, the solution space
collapses to the cone apex, being limited to single-
target missions (one probe per star). On the other end,
allowing unlimited deflection angles enables multi-
target missions with stellar routes as displayed above.
The practicability of these multi-target missions is ques-
tionable. They probably require a deceleration phase
upon approaching a star (e. g. by means of photogravi-
tational assists as suggested by Heller and Hippke
(2017)) before accelerating towards the next star on
the route. Further research on this aspect is certainly
needed, with the methodology presented here serving
as a potential starting point.

� Assumptions on star model: Being based on Gaia DR2,
the star model is aimed to represent a realistic approxi-
mation of the Solar neighborhood. Besides the known
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limits of Gaia DR2, the main shortcoming of the model
is the omission of stellar motion and gravity. It has been
shown that the inclusion of stellar motion would not sig-
nificantly enhance the accuracy of star positions in the
model, as its impact is similar to or smaller than that
of the current star distance estimations. Consequently,
in light of the overarching objective of this study (ex-
ploring trends and variations in strategies rather than
precise mission planning), this simplification is expected
to have no effect on the reliability of the presented find-
ings. However, both stellar motion and gravity could be
considered for a more realistic trajectory design, which
allows the spacecrafts to perform trajectory corrections
or gain velocity e. g. through slingshot maneuvers
(Forgan et al., 2012) or photogravitational assists
(Heller and Hippke, 2017; Heller et al., 2017). This
would also affect the optimal star sequence, e. g. by tak-
ing into account whether a star system can be used for
maneuvering beside its scientific value. The scientific
value is another aspect, which has not been included
yet in the model, as all stars are assumed to provide
the same reward. For further model refinement, a stellar
metric is proposed by Lebert (2021), which assigns each
star system a different reward (‘‘stellar score”), taking
different aspects into account such as the probability
of hosting habitable planets.

� Limitations of the algorithm: Due to its metaheuristic
nature the used algorithm does not guarantee to find
the global optimum. This issue has been encountered
with a test model. For a test run with 4 probes, the devi-
ation between the known global optimum and algorith-
mic solution was found to be about 10%.
A second source which supports the reliability of the
results is provided by Cartin (2013), who derived a sim-
ilar scaling law: Disregarding the influence of the veloc-
ity and focusing on the objectives of our study, his



Fig. 19. Theoretical solution space spanned by the results.
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scaling law can be rewritten as J 1 � J 2 m0:8. Compared
to the findings presented here, there is a deviation of
approximately 20–30% in the growth factor, thus vali-
dating the general trend of the results.

Given these limitations, it is emphasized that the derived
results need to be considered rather as trends or tendencies
instead of exact solutions.
4.2. Implications for algorithmic and optimization procedure

As a side result, one remarkable observation on the opti-
mization procedure has been made: As there is a limitation
of the maximum route length Tmax required, the routes
need to be cut if their length exceeds Tmax to ensure valid
solutions. However, we found that the solution quality
can be increased significantly if we initially allow missions
with unconstraint route lengths, which has the following
reason:

The first generation is created randomly, which leads to
very poor routes (long mission duration with few stars
explored). With an active time constraint Tmax the routes
have to be cut substantially, which removes many stars that
are not shared with subsequent generations. By means of
what we refer to as initial relaxation of the time constraint,
the routes are not cut in the beginning. Therefore, subse-
quent generations have access to a maximum number of
stars, which allows them to identify better routes due to
the enlarged search space. If the time constraint is then
activated at a later point in the optimization procedure,
the cutting process removes a lower number of stars, as
the routes are already partially optimized.

This approach can be useful in various applications and
problems which are characterized by a large search space
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that is significantly confined through an optimization
constraint.
4.3. Implications for exploration strategies

Regarding the exploration strategies, various observa-
tions have been made concerning the impact of the probe
number. Its implications on exploration strategies are sum-
marized below and illustrated in Fig. 20:

� When the mission’s objective is to explore many stars
close to the Solar System, a larger number of probes is
advantageous. Furthermore, the use of a higher number
of probes allows for greater customization of scientific
instrumentation and equipment for each target star in
single-target missions, resulting in a higher scientific
return.

� If the probe number is restricted (e. g. in case of high
production costs), more distant stars should be consid-
ered to increase routing efficiency. However, it should
be noted that decreasing the probe number results in a
considerable rise in mission duration.

� Overall, missions with low probe numbers enable
shorter travel distances to achieve a desired mission
return. This should be taken into account in situations
where fuel costs are a concern: As the required transfer
distance per explored star is lower in that case, deploy-
ing fewer probes may be more cost-effective in terms
of fuel consumption.

� Exploration missions targeting binary or multiple star
systems may benefit from using a lower number of
probes.

Finally, a scaling law was derived, which describes the
relation between mission return, mission duration and



Fig. 20. Strategy recommendations based on mission constraints and requirements including suitable probe concepts from literature.

Fig. 21. Benefits of swarm-based probe concepts: By using a mother ship in Mission B, the number of long departure trajectories in Mission A is
minimized.
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probe number. It revealed that the benefit of deploying
additional probes to increase mission return diminishes as
the probe number increases. The reason for that behavior
is presumably a saturation or crowding effect, as all probes
are launched from the Solar System: Due to the common
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departure site the distance to the nearest star which is still
unexplored increases with each probe being launched. This
results in large initial transfers if the mission consists of a
high number of probes. Besides reducing the probe
number, swarm-based mission concepts are an option to



Fig. 22. First derivative of the scaling law with respect to the probe number and recommendation for swarm-based concepts based on qualitative analysis
of the scaling law.
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circumvent these long departure trajectories: Using a
mother ship, a group of smaller probes can be carried to
a faraway star or region. Upon arrival, the probes are sep-
arated and begin with the actual exploration as visualized
in Fig. 21. Probes that are capable of self-replication have
a similar effect but might increase the mission duration sig-
nificantly due to the required replication time.

Based on the described scaling law, one can finally try to
derive a qualitative recommendation for swarm-based
probe concepts depending on the probe number, as visual-
ized in Fig. 22. According to the indicated trend, for very
low probe numbers (say up to a range of 10–20 probes),
there is still a substantial increase in mission return with
each additional probe being launched. However, one
should note that there is a decline in efficiency already from
the beginning. For a higher number of probes (say 20–100
upwards) swarm-based concepts should definitely be taken
into consideration.

5. Conclusions

This article presented optimal strategies for interstellar
exploration missions for nearby stars, using a dedicated
methodology. Based on a minimum set of parameters,
the design of interstellar exploration missions was defined
as a bi-objective multi-vehicle open routing problem. The
problem was addressed by a hybrid multi-objective genetic
algorithm. The underlying star models use data from Gaia
DR2 and include a max. number of 10,000 stars.

Regarding the model and optimization procedures, the
following key findings can be inferred from the results:
Based on a qualitative analysis, stars in the Solar neighbor-
hood (up to 110 ly distance) appear to exhibit a uniform
spatial distribution, however, due to the existence of binary
or multiple star systems they are not equally spaced. The
technique of initially relaxing the time constraint to
enhance the algorithm’s performance can be applied in sim-
ilar structured optimization problems (extensive search
space restricted by external constraints).

Regarding potential exploration strategies, the number
of probes has significant implications: Deploying a large
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number of probes is advantageous for missions that focus
on exploring the closest stars in Solar vicinity. Another
advantage is that using a higher number of probes allows
for greater specialization. In general, high probe numbers
can reduce mission duration substantially, as indicated by
the derived relationship between probe number and opti-
mization objectives. Such missions are most appropriate
for utilizing small and lightweight probes where the energy
source of the propulsion system is remote (e.g. laser beam-
ing infrastructure), such as proposed in the Breakthrough
Starshot project.

On the other hand, a lower number of probes enables a
more resource-efficient exploration, mainly because of the
shorter transfer distances involved. An additional distinc-
tion of low probe number missions is their inclusion of
more distant stars and their potential efficiency when tar-
geting binary or multiple star systems. However, missions
involving a small number of probes typically require longer
routes, which results in longer mission durations. In those
cases, more advanced probes might be considered, e. g.
with high levels of autonomy. The extended mission dura-
tion also necessitates high levels of robustness, and ideally,
self-repairing capabilities for the deployed probes. Because
of the reduced transfer distances, energy expenses are
decreased, thereby enabling the use of large-scale probes
equipped with built-in propulsion systems. A probe design
appropriate for such missions could be similar to the Dae-
dalus spacecraft or its subsequent projects, such as Project
Icarus (Long et al., 2010).

The scaling law obtained from the analysis of the results
reveals a behavior closely resembling the principle of
diminishing returns. Therefore, a significant increase in
mission return due to an increase in probe number can only
be expected for low probe numbers. The observed behavior
is believed to be caused by a crowding-like effect, which
arises when a large number of probes are launched from
the Solar System. Swarm-based exploration strategies are
recommended to encounter this issue.

Due to the current state of the art with limited research
in the area of interstellar exploration, there is a lot of
potential for further studies, e. g. in terms of modeling:
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For instance, enhancements to the generic probe and mis-
sion model can be achieved by incorporating additional
variables (such as probe mass), considering rendezvous
maneuvers, or taking self-replication capabilities into
account. The star model could be extended by including
factors such as stellar motion and gravity for a more real-
istic trajectory design. Furthermore, it would be interesting
to incorporate more knowledge on stars and exoplanets by
assigning each star a different score (profit) depending on
its characteristics (see Lebert (2021) for a suggestion on a
stellar metric).
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