Gossamer space structures; International collaboration; Lightsails; Solar sails; Space exploration; Space sails; Drag sails; Historical review; International collaborations; Lightsail; Membrane reflectors; Planned missions; Power; Space explorations; Space sail; Aerospace Engineering; Mechanics of Materials; Mechanical Engineering
Abstract :
[en] Space sails are a continuum of lightweight, thin, large-area, deployable technologies which are pushing forward new frontiers in space mobility and exploration. They encompass solar sails, laser-driven sails, drag sails, magnetic sails, electric sails, deployable membrane reflectors, deployable membrane antennas, and solar power sails. Some have been flight tested with operational heritage, while some are concepts planned to reach maturity in the coming decades. The number of flown and planned missions has increased rapidly in the past fifteen years. In this context, it is time to recognise the advantages of space sails for supporting the achievement of a wide range of major space exploration goals. This paper evaluates, for the first time, synergies between the broad spectrum of space sail technologies, and major space exploration ambitions around the world. The study begins by looking to the past, performing a global, historical review of space sails and related enabling technologies. The current state of the art is mapped against this technological heritage. Looking to the future, a review of major space exploration goals in the next decades is conducted, highlighting domains where space sails may offer transformational opportunities. It is hoped that this paper will further the ongoing transition of space sails from a promising flight-proven technology into a go-to component of space mission programme planning.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Berthet, Maximilien ; University of Tokyo, Tokyo, Japan
Schalkwyk, James ; Breakthrough Initiatives, Moffett Field, United States
Çelik, Onur ; Delft University of Technology, Delft, Netherlands
Sengupta, Debdut ; Imperial College London, London, United Kingdom
Fujino, Ken ; University of Tokyo, Tokyo, Japan
HEIN, Andreas ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SPASYS
Tenorio, Luciana ; Future Design Labs, PricewaterhouseCoopers, Tokyo, Japan
Cardoso dos Santos, Josué ; Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan ; University of Colorado Colorado Springs, Colorado Springs, United States
Worden, S. Peter ; Breakthrough Initiatives, Moffett Field, United States
Mauskopf, Philip D. ; Arizona State University, Tempe, United States
Miyazaki, Yasuyuki ; Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
Funaki, Ikkoh ; Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
Tsuji, Shinjiro; University of Tokyo, Tokyo, Japan
Fil, Piotr ; Imperial College London, London, United Kingdom
Suzuki, Kojiro ; University of Tokyo, Kashiwa, Japan
National Aeronautics and Space Administration Centre National d’Etudes Spatiales Deutsches Zentrum für Luft- und Raumfahrt
Funding text :
To identify expected future space sailing-applied and -applicable activities, one indicator is the number of projects supported by the NASA Innovative Advanced Concepts (NIAC) programme. This provides insight into early-stage research and development areas which are well-positioned to grow further. NIAC projects are funded by STMD in line with envisioned future priorities in NASA Technology Strategy. Between 2015 and 2024, at least 12 projects have been supported by NIAC in which space sailing mission concepts, material studies, and related ideas were present (some have been supported multiple times or at multiple stages). 5 5 One example is an exoplanet imaging mission from the solar gravitation lens, with 16 small spacecraft equipped with a 1000 m area solar sail [268] . Another is a diffractive solar sail project investigating more efficient use of the technology [106] . A project awarded funding in 2024 consists of a swarm of laser-driven picospacecraft for coordinated, autonomous exploration of the Alpha Centauri system [269] .To progress beyond research and development, a movement towards commercialisation of space sails for near-Earth applications is being promoted, including by space agencies. For instance, the French private company Gama, founded in 2020, has been supported by CNES and DLR to develop its series of solar sails. One was launched into LEO in 2023, and multiple successor missions are planned for 2025-2030 [39] . Japanese private company Cosmobloom, founded in 2023, is offering consulting services for gossamer space structure development and utilisation, including for applications like space solar power in Earth orbit and starshades for astronomical observation. These build on the founders\u2019 heritage in solar sail, solar power sail, and deployable antenna development, with support from advisors at JAXA [331] . German private company HPS GmbH, in collaboration with ESA and DLR, is developing a commercial European passive de-orbit sail system for LEO satellites, as part of a portfolio of thin-film membrane space structures including deployable membrane reflector antennas and thin-film sunshades [128] . Finnish company Aurora Propulsion Technologies is commercialising the plasma brake electric sail, with applications both for de-orbit from LEO and for exploration in deep space, and has been supported by an ESA Business Incubator Centre programme [328] . This trend towards the commercialisation of space sails is expected to continue. Space agencies are playing an important role in this regard, by providing funding (e.g., awarding contracts), a favourable regulatory environment (e.g., stricter de-orbit requirements, thereby prompting investments into drag sail technologies), and other incentives for space sail research and development. Looking to the future, more and more space sail systems are expected to become commercial off-the-shelf components, leading to significantly wider adoption in the space industry.The authors wish to thank the University of Tokyo's Deep Space Education Program (DESP) and the Breakthrough Initiatives for hosting the international symposium \u201CLarge Area Structures and Light: A Pathway to New Frontiers in Space?\u201D, in Kashiwa, Japan, in September 2023. Ideas exchanged, conversations held, and acquaintances made during the symposium provided the groundwork for this study. The University of Tokyo's Graduate School of Frontier Sciences (GSFS), Science Communications Improvement Lab (SCIL), and the University of Tokyo's Kashiwa Campus Library are gratefully acknowledged for contributing to positive outcomes of the event. Kyran Grattan is warmly thanked for assisting with project management. The anonymous reviewer helped to increase the quality of the manuscript, and the authors appreciate their constructive comments.
Fu, B., Sperber, E., Eke, F., Solar sail technology - A state of the art review. Prog. Aerosp. Sci. 86 (2016), 1–19 https://doi.org/10.1016/j.paerosci.2016.07.001.
Lubin, P., A roadmap to interstellar flight. J. Br. Interplanet. Soc. 69 (2016), 40–72 https://doi.org/10.48550/arXiv.1604.01356.
Zhang, R., Yang, K., Zhang, J., Bi, S., Overview and key technology of the membrane drag sail for low Earth orbit satellite deorbit. Space: Sci. Technol., 4(115), 2024 https://doi.org/10.34133/space.0115.
Rohrschneider, R.R., Braun, R.D., Survey of ballute technology for aerocapture. J. Spacecr. Rockets 44:1 (2007), 10–23 https://doi.org/10.2514/1.19288.
Djojodihardjo, H., Review of solar magnetic sailing configurations for space travel. Adv. Astronaut. Sci. Technol. 1:2 (2018), 207–219 https://doi.org/10.1007/s42423-018-0022-4.
Janhunen, P., Toivanen, P.K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E., Seppänen, H., Kurppa, R., Ukkonen, J., Kiprich, S., et al. Invited article: Electric solar wind sail: Toward test missions. Rev. Sci. Instrum., 81(11), 2010 https://doi.org/10.1063/1.3514548.
Lior, N., Mirrors in the sky: Status, sustainability, and some supporting materials experiments. Renew. Sustain. Energy Rev. 18 (2013), 401–415, 10.1016/j.rser.2012.09.008.
Lightsey, P.A., Atkinson, C., Clampin, M., Feinberg, L.D., James Webb Space Telescope: large deployable cryogenic telescope in space. Opt. Eng., Bellingham, 51(1), 2012 https://doi.org/10.1117/1.OE.51.1.011003.
Arenberg, J.W., Harness, A.D., Jensen-Clem, R.M., Special section on starshades: Overview and a dialogue. J. Astron. Telesc. Instrum. Syst., 7(2), 2021 https://doi.org/10.1117/1.JATIS.7.2.021201.
Liu, Z.-Q., Qiu, H., Li, X., Yang, S.-L., Review of large spacecraft deployable membrane antenna structures. Chin. J. Mech. Eng. 30 (2017), 1447–1459 https://doi.org/10.1007/s10033-017-0198-x.
Matsushita, M., Chujo, T., Matsumoto, J., Mori, O., Yokota, R., et al. Solar power sail membrane prototype for OKEANOS mission. Adv. Space Res. 67:9 (2021), 2899–2911 https://doi.org/10.1016/j.asr.2020.10.007.
National Academies of Sciences, Engineering, and Medicine, M., Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032. 2023, The National Academies Press https://doi.org/10.17226/26522.
International Space Exploration Coordination Group, M., The Global Exploration Roadmap. 2024, NASA https://www.globalspaceexploration.org/wp-content/isecg/GER2024.pdf. (Accessed 11 September 2024).
European Space Agency, M., Terrae novae 2030+ strategy roadmap. 2022 https://esamultimedia.esa.int/docs/HRE/Terrae_Novae_2030+strategy_roadmap.pdf. (Accessed 9 February 2024).
Japan Aerospace Exploration Agency, M., The plan for achieving mid to long-term objectives of national R&D agency Japan Aerospace Exploration Agency (mid to long-term plan) (draft). 2017 https://www.mext.go.jp/component/b_menu/shingi/giji/__icsFiles/afieldfile/2019/01/31/1403868_13.pdf. (Accessed 9 February 2024).
Mori, O., Sawada, H., Funase, R., Morimoto, M., Endo, T., et al. First solar power sail demonstration by IKAROS. Trans. Japan Soc. Aeronaut. Space Sci. Aerosp. Technol. Japan 8:ists27 (2010), 25–31 https://doi.org/10.2322/tastj.8.To_4_25.
Worden, S.P., Bandutunga, C., Sibley, P., Ireland, M., Schalkwyk, J., Breakthrough Starshot program overview. Phipps, C., (eds.) Laser Propulsion in Space, 2024, Elsevier, Amsterdam, The Netherlands, 39–70 (Chapter 2). https://doi.org/10.1016/B978-0-44-315903-9.00008-2.
Uto, H., Kuwahara, T., Honda, T., Orbit verification results of the de-orbit mechanism demonstration CubeSat FREEDOM. Trans. Japan Soc. Aeronaut. Space Sci. Aerosp. Technol. Japan 17:3 (2019), 295–300 https://doi.org/10.2322/tastj.17.295.
I. Funaki, H. Yamakawa, K. Fujita, H. Ogawa, S. Nonaka, S. Sawai, H. Kuninaka, H. Otsu, Study of a Plasma Sail for Future Deep Space Missions, in: 28th International Electric Propulsion Conference, Toulouse, France, 2003, Paper IEPC 2003-89,.
Janhunen, P., Electric sail for spacecraft propulsion. J. Propuls. Power, 20(4), 2004 https://doi.org/10.2514/1.8580.
Phipps, C., Laser Propulsion in Space. 2024, Elsevier, Amsterdam, The Netherlands https://doi.org/10.1016/C2022-0-02217-0.
Funaki, I., Yamakawa, H., Solar wind sails. Lazar, M., (eds.) Exploring the Solar Wind, 2012, IntechOpen, Rijeka (Chapter 19). https://doi.org/10.5772/35673.
Bassetto, M., Perakis, N., Quarta, A.A., Mengali, G., Refined MagSail thrust model for preliminary mission design and trajectory optimization. Aerosp. Sci. Technol. 133 (2023), 3–18 https://doi.org/10.1016/j.ast.2023.108113.
Bassetto, M., Niccolai, L., Quarta, A.A., Mengali, G., A comprehensive review of electric solar wind sail concept and its applications. Prog. Aerosp. Sci., 128, 2022, 100768 https://doi.org/10.1016/j.paerosci.2021.100768.
Li, M.-J., Li, M., Liu, Y.-F., Geng, X.-Y., Li, Y.-Y., A review on the development of spaceborne membrane antennas. Space: Sci. Technol., 2022(803603), 2022 https://doi.org/10.34133/2022/9803603.
Chandra, M., Kumar, S., Chattopadhyaya, S., Chatterjee, S., Kumar, P., A review on developments of deployable membrane-based reflector antennas. Adv. Space Res. 68:9 (2021), 3749–3764 https://doi.org/10.1016/j.asr.2021.06.051.
Mori, O., Matsumoto, J., Chujo, T., Matsushita, M., Kato, H., Saiki, T., Tsuda, Y., Kawaguchi, J., Terui, F., Mimasu, Y., et al. Solar power sail mission of OKEANOS. Astrodynamics 4 (2020), 233–248 https://doi.org/10.1007/s42064-019-0067-8.
J.V. Gore, Design, construction and testing of the Communications Technology Satellite protection against spacecraft charging, in: Proceedings of the Spacecraft Charging Technology Conference, El Paso County, Colorado, USA, 1977,.
Macdonald, M., McInnes, C., Solar sail science mission applications and advancement. Adv. Space Res. 48:11 (2011), 1702–1716 https://doi.org/10.1016/j.asr.2011.03.018.
Garwin, R.L., Solar sailing - a practical method of propulsion within the solar system. Jet Propul. 28:3 (1958), 188–190.
Vulpetti, G., Johnson, L., Matloff, G.L., The NanoSAIL-D2 NASA mission. Solar Sails: A Novel Approach To Interplanetary Travel, 2015, Springer, 173–178 https://doi.org/10.1007/978-1-4939-0941-4_16.
A. Nutter, C. Bauda, J. Culeux, M. Straubel, M.E. Zander, M. Hillebrandt, Objectives, Design and Initial Test Results of the Upcoming GAMA-β Solar Sail In-Orbit Demonstration, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
Mankins, J.C., Technology Readiness Levels. 1995, Advanced Space Concepts Office, NASA https://aiaa.kavi.com/apps/group_public/download.php/2212/TRLs_MankinsPaper_1995.pdf. (Accessed 3 June 2024).
Matloff, G., Johnson, L., Breakthrough sun diving: The rectilinear option. J. Br. Interplanet. Soc. 76:8 (2023), 283–287 https://doi.org/10.59332/jbis-076-08-0283.
Forward, R.L., Pluto - the gateway to the stars. Missiles Rockets 10 (1962), 26–28.
Parkin, K.L.G., The Breakthrough Starshot system model. Acta Astronaut. 152 (2018), 370–384 https://doi.org/10.1016/j.actaastro.2018.08.035.
Atwater, H.A., Davoyan, A.R., Ilic, O., Jariwala, D., Sherrott, M.C., Went, C.M., Whitney, W.S., Wong, J., Materials challenges for the Starshot lightsail. Nature Mater. 17 (2018), 861–867 https://doi.org/10.1038/s41563-018-0075-8.
Benford, J., Benford, G., Near-term beamed sail propulsion missions: Cosmos-1 and sun-diver. AIP Conf. Proc. 664 (2003), 358–368 https://doi.org/10.1063/1.1582124.
Hansen, J.R., The Odyssey of Project Echo. Spaceflight Revolution: NASA Langley Research Center from Sputnik to Apollo, 1995, NASA, Washington D. C., 153–196 NASA SP-4308, https://www.nasa.gov/wp-content/uploads/2023/04/sp-4308.pdf.
L. Johnson, D. Alhorn, M. Boudreaux, J. Casas, D. Stetson, R. Young, Solar and Drag Sail Propulsion: From Theory to Mission Implementation, in: Space Propulsion Conference, Cologne, Germany, 2014,.
Andrews, D.G., Zubrin, R.M., Magnetic sails and interstellar travel. J. Br. Interplanet. Soc. 43 (1990), 265–272.
Kirtley, D., A plasma aerocapture and entry system for manned missions and planetary deep space orbiters. 2013 Phase I Final Report, https://www.nasa.gov/wp-content/uploads/2019/03/niac_2012_phasei_kirtley_plasmaaerocapture_tagged.pdf. (Accessed 10 February 2024).
Iakubivskyi, I., Janhunen, P., Praks, J., Allik, V., Bussov, K., et al. Coulomb drag propulsion experiments of ESTCube-2 and FORESAIL-1. Acta Astronaut. 177 (2020), 771–783 https://doi.org/10.1016/j.actaastro.2019.11.030.
Sánchez-Arriaga, G., Lorenzini, E.C., Bilén, S.G., A review of electrodynamic tether missions: Historical trend, dimensionless parameters, and opportunities opening space markets. Acta Astronaut. 225 (2024), 158–168 https://doi.org/10.1016/j.actaastro.2024.09.002.
Oberth, H., Ways to spaceflight. 1972 NASA TT F-622 (Technical translation of “Wege zur Raumschiffahrt”, R. Oldenbourg Verlag, Munich- Berlin, 1929).
Westrick, G.C., Johnson, K.G., The Orbital Behavior of the Echo-I Satellite and its Rocket Casing During the First 500 Days: Technical Note D-1366., 1962, Langley Research Center, NASA https://ntrs.nasa.gov/api/citations/19620003290/downloads/19620003290.pdf. (Accessed 1 April 2024).
Koshelev, V.A., Melnikov, V.M., Large Space Structures Formed by Centrifugal Forces. 1998, CRC Press https://doi.org/10.1201/9781003078203.
O'Sullivan, W.J., Self-supporting space vehicle. 1961 US Patent 2,996,212, Filed 1959, https://patentimages.storage.googleapis.com/9a/94/b0/1dcf4ff7f2ba8b/US2996212.pdf. (Accessed 31 August 2024).
QPS, W.J., QPS-SAR PROJECT: Near-real-time Earth observation by small SAR satellite constellation. 2024 https://i-qps.net/en/project/. (Accessed 1 April 2024).
ESA, W.J., R3D2 (radio frequency risk reduction deployment demonstration). 2019 eoPortal, Satellite Missions Catalogue, https://www.eoportal.org/satellite-missions/r3d2. (Accessed 31 August 2024).
Bandyopadhyay, S., Mcgarey, P., Goel, A., Rafizadeh, R., Delapierre, M., Arya, M., Lazio, J., Goldsmith, P., Chahat, N., Stoica, A., Quadrelli, M., Nesnas, I., Jenks, K., Hallinan, G., Conceptual design of the Lunar Crater Radio Telescope (LCRT) on the far side of the Moon. 2021 IEEE Aerospace Conference (50100), 2021 https://doi.org/10.1109/AERO50100.2021.9438165.
Ray, K.A., Flexible solar cell arrays for increased space power. IEEE Trans. Aerosp. Electron. Syst. AES-3:1 (1967), 107–115 https://doi.org/10.1109/TAES.1967.5408720.
Lockheed Missiles and Space Company, K.A., Solar array flight experiment: Final report. 1986 NASA CR-183535, https://web.archive.org/web/20240816022900/https://ntrs.nasa.gov/api/citations/19890004113/downloads/19890004113.pdf. (Accessed 31 August 2024).
Nakasuka, S., Aoki, T., Ikeda, I., Tsuda, Y., Kawakatsu, Y., “Furoshiki satellite” - a large membrane structure as a novel space system. Acta Astronaut. 48:5 (2001), 461–468 https://doi.org/10.1016/S0094-5765(01)00056-X.
Takao, Y., Mori, O., Matsumoto, J., Chujo, T., Kikuchi, S., et al. Sample return system of OKEANOS - The solar power sail for Jupiter Trojan exploration. Acta Astronaut. 213 (2023), 121–137 https://doi.org/10.1016/j.actaastro.2023.08.044.
Jenkins, C.H., Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications. 2001, American Institute of Aeronautics and Astronautics https://doi.org/10.2514/4.866616.
Ruggiero, E.J., Inman, D.J., Gossamer spacecraft: Recent trends in design, analysis, experimentation, and control. J. Spacecr. Rockets, 43(1), 2006 https://doi.org/10.2514/1.8232.
Tenorio, L., Yokozeki, T., Sato, J., Structural design of super pressure balloon habitat on the moon. Acta Astronaut. 195 (2022), 183–203 https://doi.org/10.1016/j.actaastro.2022.02.031.
Bruhn, F.C., Kratz, H., Warell, J., Lagerkvist, C.-I., Kaznov, V., Jones, J.A., Stenmark, L., A preliminary design for a spherical inflatable microrover for planetary exploration. Acta Astronaut. 63:5 (2008), 618–631 https://doi.org/10.1016/j.actaastro.2008.01.044.
Funaki, I., Overview of Sail Propulsion for Space Flight Lecture in “Propulsion and Energy Systems”, 2015, University of Tokyo http://www.al.t.u-tokyo.ac.jp/lecture/Chap8(SailingPropulsion).pdf. (Accessed 31 August 2024).
Heaton, A.F., Faller, B.F., Katan, C.K., NanoSail:D orbital and attitude dynamics. Macdonald, M., (eds.) Advances in Solar Sailing, 2014, Springer, Berlin, Heidelberg, 153–167 https://doi.org/10.1007/978-3-642-34907-2_7.
Mansell, J.R., Bellardo, J.M., Betts, B., Plante, B., Spencer, D.A., LightSail 2 solar sail control and orbit evolution. Aerospace, 10, 2023, 579 https://doi.org/10.3390/aerospace10070579.
Breakthrough Initiatives, J.R., Day 2 Session 3 — Harry Atwater - Keynote — Starshot: From science to spacecraft and missions. 2023 https://youtu.be/IrLcllx0LpQ, (Accessed 10 February 2024).
J.I. Minow, I. Katz, P.D. Craven, V.A. Davis, B.M. Gardner, T.W. Kerslake, M.J. Mandell, L.N. Parker, T.J. Peshek, E.M. Willis, K.H. Wright, Evidence for Arcing on the International Space Station Solar Arrays, in: Proceedings of the 15th Spacecraft Charging Technology Conference, Kobe, Japan, 2018,.
Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Kawaguchi, J., Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut. 69:9 (2011), 833–840 https://doi.org/10.1016/j.actaastro.2011.06.005.
Lappas, V., Adeli, N., Visagie, L., Fernandez, J., Theodorou, T., Steyn, W., Perren, M., CubeSail: A low cost CubeSat based solar sail demonstration mission. Adv. Space Res. 48:11 (2011), 1890–1901 https://doi.org/10.1016/j.asr.2011.05.033.
J. Heiligers, B. Diedrich, W. Derbes, C. McInnes, Sunjammer: Preliminary End-to-End Mission Design, in: AIAA/AAS Astrodynamics Specialist Conference, San Diego, California, US, 2014,.
Montenbruck, O., Gill, E., Satellite Orbits. 2012, Springer.
Alexander, A., Friedman, L.D., Cosmos 1: The journey begins!. Planet. Rep. 24:6 (2004), 7–11 https://s3.amazonaws.com/planetary/assets/tpr/pdf/tpr-2004-v24n6_200424_191211.pdf.
Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C., NanoSail-D: A solar sail demonstration mission. Acta Astronaut. 68:5 (2011), 571–575 https://doi.org/10.1016/j.actaastro.2010.02.008.
CU Aerospace, L., CubeSail. 2024 https://www.cubesail.us/. (Accessed 10 February 2024).
L. Johnson, E. Betts, A. Heaton, C. Jones, L. McNutt, et al., Near Earth Asteroid Scout - Mission Update, in: 36th Annual Small Satellite Conference, Logan, Utah, US, 2022, Paper SSC22-IX-01,.
K. Wilkie, The NASA Advanced Composite Solar Sail System (ACS3) Flight Demonstration: A Technology Pathfinder for Practical Smallsat Solar Sailing, in: 35th Annual Small Satellite Conference, Logan, Utah, US, 2021, Paper SSC21-II-10,.
Berthet, M., Suzuki, K., Sunflower mission concept for high-altitude earth observation in LEO via nanosatellite with pyramidal solar sail. Acta Astronaut. 213 (2023), 516–536 https://doi.org/10.1016/j.actaastro.2023.09.017.
J. Mitsugi, M. Natori, K. Miura, Preliminary evaluation of the spinning planar solar sail, in: 28th Structures, Structural Dynamics and Materials Conference, Monterey, California, US, 1987, Paper AIAA 1987-742,.
C. Garner, B. Diedrich, M. Leipold, A Summary of Solar Sail Technology Developments and Proposed Demonstration Missions, in: 35th Joint Propulsion Conference and Exhibit, Los Angeles, California, US, 1999, AIAA Paper 1999-2697,.
Friedman, L.D., Garber, D., Turyshev, S.G., et al. A mission to nature's telescope for high-resolution imaging of an exoplanet. Exp. Astron., 57, 2024 https://doi.org/10.1007/s10686-024-09919-x.
MacNeal, R.H., The Heliogyro: An Interplanetary Flying Machine: ARC-R-249., 1967, Astro Research Corporation, Santa Barbara, California, US https://ntrs.nasa.gov/api/citations/19670018298/downloads/19670018298.pdf. (Accessed 9 February 2024).
McInnes, C.R., Solar Sailing: Technology, Dynamics and Mission Applications. 1999, Springer https://doi.org/10.1007/978-1-4471-3992-8.
L. Johnson, C. Diaz, L. McNutt, D. Tyler, D. Wallace, J. Wilson, The NASA Solar Cruiser Solar Sail System - Ready for Heliophysics and Deep Space Missions, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
J.S. Umansky-Castro, J.M.B. Mesquita, A. Kumar, M. Anderson, Y.T. Tan, et al., Design of the Alpha CubeSat: Technology Demonstration of a ChipSat-Equipped Retroreflective Light Sail, in: AIAA Scitech 2021 Forum, Online, 2021,.
Jack, C., Welch, C.S., Solar kites: Small solar sails with no moving parts. Acta Astronaut. 40:2 (1997), 137–142 https://doi.org/10.1016/S0094-5765(97)00120-3.
Lappas, V., Wie, B., McInnes, C., Tarabini, L., Gomes, L., Wallace, K., Microsolar sails for earth magnetotail monitoring. J. Spacecr. Rockets 44:4 (2007), 840–848 https://doi.org/10.2514/1.23456.
P. Fil, G.B. Ribeiro, D. Sengupta, B.S. Tortosa, Research for and Early-Stage Development of the First Interstellar CubeSat Powered by Solar Sailing Technology, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
REXUS/BEXUS, P., Deployment systems. 2024 https://rexusbexus.net/experiments/technology-demonstrators/deployment-systems/. (Accessed 28 September 2024).
Heller, R., Anglada-Escudé, G., Hippke, M., Kervella, P., Low-cost precursor of an interstellar mission. Astron. Astrophys., 641(A45), 2020 https://doi.org/10.1051/0004-6361/202038687.
Karlapp, J., Heller, R., Tajmar, M., Ultrafast transfer of low-mass payloads to Mars and beyond using aerographite solar sails. Acta Astronaut. 219 (2024), 889–895 https://doi.org/10.1016/j.actaastro.2024.03.024.
Mecklenburg, M., Schuchardt, A., Mishra, Y.K., Kaps, S., Adelung, R., Lotnyk, A., Kienle, L., Schulte, K., Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv. Mater. 24 (2012), 3486–3490 https://doi.org/10.1002/adma.201200491.
Scaglione, S., Vulpetti, G., The AURORA project: Removal of plastic substrate to obtain an all-metal solar sail. Acta Astronaut. 44:2 (1999), 147–150 https://doi.org/10.1016/S0094-5765(99)00041-7.
Hein, A.M., Burkhardt, Z., Eubanks, T.M., AttoSats: ChipSats, other gram-scale spacecraft, and beyond. 2019 arXiv Pre-print, https://doi.org/10.48550/arXiv.1910.12559.
Xie, K., Li, C., Sun, S., Nam, C.-Y., Shi, Y., Wang, H., Duan, W., Ren, Z., Yan, P., Electrothermally driven reconfiguration of microrobotic beam structures for the ChipSail system. Micromachines, 14(4), 2023 https://doi.org/10.3390/mi14040831.
Barnhart, D.J., Vladimirova, T., Sweeting, M.N., Very-small-satellite design for distributed space missions. J. Spacecr. Rockets, 44(6), 2007 http://dx.doi.org/10.2514/1.28678.
Niccolai, L., Bassetto, M., Quarta, A.A., Mengali, G., A review of smart dust architecture, dynamics, and mission applications. Prog. Aerosp. Sci. 106 (2019), 1–14 https://doi.org/10.1016/j.paerosci.2019.01.003.
Bouwmeester, J., Radu, S., Uludag, M.S., et al. Utility and constraints of PocketQubes. CEAS Space J. 12 (2020), 573–586 http://dx.doi.org/10.1007/s12567-020-00300-0.
Turyshev, S.G., Garber, D., Friedman, L.D., Hein, A.M., Barnes, N., et al. Science opportunities with solar sailing smallsats. Planet. Space Sci., 235, 2023, 105744 https://doi.org/10.1016/j.pss.2023.105744.
Dubill, A.L., Swartzlander, G.A., Circumnavigating the sun with diffractive solar sails. Acta Astronaut. 187 (2021), 190–195 https://doi.org/10.1016/j.actaastro.2021.06.036.
Forward, R.L., Starwisp - an ultra-light interstellar probe. J. Spacecr. Rockets, 22(3), 1985 https://doi.org/10.2514/3.25754.
Forward, R.L., Roundtrip interstellar travel using laser-pushed lightsails. J. Spacecr. Rockets, 21(2), 1984 https://doi.org/10.2514/3.8632.
Häfner, T., Kushwaha, M., Çelik, O., Bellizzi, F., Project dragonfly: Sail to the stars. Acta Astronaut. 154 (2019), 311–319 https://doi.org/10.1016/j.actaastro.2018.05.018.
Parkin, K.L.G., Starshot system model. Phipps, C., (eds.) Laser Propulsion in Space, 2024, Elsevier, Amsterdam, The Netherlands, 71–121 (Chapter 3). https://doi.org/10.1016/B978-0-44-315903-9.00009-4.
S. You, Helicity Drive: A Novel Scalable Fusion Concept for Deep Space Propulsion, in: AIAA Propulsion and Energy 2020 Forum, Virtual event, 2020, Paper AIAA 2020-3835,.
Breakthrough, S., Day 1: Breakthrough Discuss 2021: Alpha Centauri system: A beckoning neighbor. 2021 https://youtu.be/qpewt9qEYXw?list=PLyF3OMOiy3nGgq35b5FVqCqSl6CrvHERg&t=7457. (Accessed 24 September 2024).
UCSB Experimental Cosmology Group, S., Starlight: Large scale directed energy for space applications. 2024 https://www.deepspace.ucsb.edu/projects/starlight. (Accessed 31 August 2024).
Tung, H.-T., Davoyan, A.R., Low-power laser sailing for fast-transit space flight. Nano Lett. 22:3 (2022), 1108–1114 https://doi.org/10.1021/acs.nanolett.1c04188.
Quadrelli, M.B., Basinger, S., Swartzlander, G., Orbiting rainbows: optical manipulation of aerosols and the beginnings of future space construction. 2013 Final Report of NASA Innovative Advanced Concepts (NIAC) Phase 1, Task 12-NIAC12B-0038, https://ntrs.nasa.gov/api/citations/20190001177/downloads/20190001177.pdf. (Accessed 4 April 2024).
M. Mohanalingam, C.E. Carr, Interplanetary Rapid Transit Missions from Earth to Mars using Directed Laser Energy Driven Light Sails, in: 2023 IEEE Aerospace Conference, Big Sky, Montana, USA, 2023,.
Kare, J.T., High-acceleration micro-scale laser sails for interstellar propulsion. 2001 https://www.niac.usra.edu/files/studies/final_report/597Kare.pdf. (Accessed 31 August 2024).
Gao, R., Kelzenberg, M.D., Atwater, H.A., Dynamically stable radiation pressure propulsion of flexible lightsails for interstellar exploration. Nature Commun., 15(4203), 2024 https://doi.org/10.1038/s41467-024-47476-1.
Lingam, M., Hibberd, A., Hein, A.M., A light sail astrobiology precursor mission to Enceladus and Europa. Acta Astronaut. 218 (2024), 251–268 https://doi.org/10.1016/j.actaastro.2024.02.040.
Bonnal, C., Space situational awareness: the potential role of lasers in long-term sustainability of space operations. Phipps, C., (eds.) Laser Propulsion in Space, 2024, Elsevier, Amsterdam, The Netherlands, 123–145 (Chapter 4). https://doi.org/10.1016/B978-0-44-315903-9.00010-0.
CosmoMayak, C., The Mayak satellite is the brightest star in the night sky. 2024 https://www.cosmomayak.com/. (Accessed 31 August 2024).
Murbach, M., TechEdSat nano-satellite series. 2014 FS-# 2013-08-01-ARC, NASA Facts, NASA, https://ntrs.nasa.gov/api/citations/20140013242/downloads/20140013242.pdf. (Accessed 9 February 2024).
Underwood, C., Viquerat, A., Schenk, M., Taylor, B., Massimiani, C., et al. InflateSail de-orbit flight demonstration results and follow-on drag-sail applications. Acta Astronaut. 162 (2019), 344–358 https://doi.org/10.1016/j.actaastro.2019.05.054.
Sakamoto, Y., Tanabe, Y., Yagisawa, H., Sugimura, N., Yoshida, K., Nishio, M., et al. Operation results of cubesat RAIKO released from International Space Station. Trans. Japan Soc. Aeronaut. Space Sci. Aerosp. Technol. Japan 12:ists29 (2014), 7–12 https://doi.org/10.2322/tastj.12.Tf_7.
A.S. Arshad, A. Jacobovits, Y. Ahmad, D.J. Goldstein, The Small Payload ORbit Transfer (SPORT) Vehicle and The Business Environment for the Next Generation of Piggyback Launch Options, in: 15th AIAA/USU Conference on Small Satellites, Logan, Utah, US, 2001, Paper SSC01-II-5,.
Long, A.C., Spencer, D.A., A scalable drag sail for the deorbit of small satellites. J. Small Satellites 7:3 (2018), 773–788 https://jossonline.com/wp-content/uploads/2019/01/Final-Spencer-A-Scalable-Drag-Sail-for-the-Deorbit-of-Small-Satellites.pdf.
P. Laube, P. Seefeldt, J. Bingen, D. Stelzl, L. Hofmann, et al., ADEO-N - Deployable Passive De-Orbit Sail Subsystem Enabling Space Debris Mitigation for CubeSats, SmallSats and Constellations, in: ESA's Clean Space Industry Days, 2021 CSID, Online, 2021,.
Axelspace, P., Axelspace's D-SAIL selected for JAXA's innovative satellite technology demonstration-4. 2023 https://www.axelspace.com/news/20230227/. (Accessed 31 August 2024).
Kayser, L.D., Pressure distribution, heat transfer, and drag tests on the Goodyear ballute at mach 10. 1962 AEDC-TDR-62-39, https://apps.dtic.mil/sti/tr/pdf/AD0272834.pdf. (Accessed 31 August 2024).
Walberg, G.D., A survey of aeroassisted orbit transfer. J. Spacecr. Rockets 22:1 (1985), 3–18 https://doi.org/10.2514/3.25704.
D. Andrews, F. Bloetscher, Aerobraked orbital transfer vehicle definition, in: 19th Aerospace Sciences Meeting, St Louis, Missouri, USA, 1981, Paper AIAA 1981-279,.
Dickman, G.J., Orbital transfer vehicle: Concept definition and system analysis study. 1987 Volume 2: On Concept Definition and Evaluation. Book 2: OTV Concept Definition, https://ntrs.nasa.gov/api/citations/19890004078/downloads/19890004078.pdf. (Accessed 31 August 2024).
Guidotti, G., Princi, A., Gutierrez-Briceno, J., et al. EFESTO-2: European flexible heat shields advanced TPS design and tests for future in-orbit demonstration-2. Aerotec. Missili Spazio 103 (2014), 149–164 https://doi.org/10.1007/s42496-023-00191-4.
L. Marraffa, D. Vennemann, U. Anschuetz, S. Walther, C.S. Stelter, K.M. Pitchkhadze, V.S. Finchenko, IRDT-Inflatable Re-entry and Descent Technology: The IRDT-2 Mission and Future Applications, in: Proceedings of the 4th European Workshop, Hot Structures and Thermal Protection Systems for Space Vehicles, Palermo, Italy, 2003, pp. 19–28, ESA SP-521.
R.J. Bodkin, R.L. Akamine, H. Blakeley, P. Brewster, N. Cheatwood, T. Clark, R.A. Dillman, J. DiNonno, A. Emmett, S.M. Hancock, H. Stephen, R.N. Mosher, B. Saulman, G. Swanson, The Design of the Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) Reentry Vehicle (RV), in: AIAA Scitech 2024 Forum, Orlando, Florida, USA, 2024, Paper AIAA 2024-1310,.
Q. Morel, Cranfield's Inherently Safe re-entry Capsule Design for YES2, in: 54th International Astronautical Congress, Bremen, Germany, 2003,.
E. Venkatapathy, K. Hamm, I. Fernandez, J. Arnold, D. Kinney, B. Laub, A. Makino, M. McGuire, et al., Adaptive Deployable Entry and Placement Technology (ADEPT): A Feasibility Study for Human Missions to Mars, in: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, Ireland, 2011, Paper AIAA 2011-2608,.
B. Smith, E. Venkatapathy, P. Wercinski, B. Yount, D. Prabhu, P. Gage, L. Glaze, C. Baker, Venus In Situ Explorer Mission design using a mechanically deployed aerodynamic decelerator, in: 2013 IEEE Aerospace Conference, Big Sky, Montana, USA, 2013,.
Schroeder, K., Samareh, J., Bayandor, J., TANDEM: Tension adjustable network for deploying entry membrane. J. Spacecr. Rockets 55:6 (2018), 1379–1392 http://dx.doi.org/10.2514/1.A33913.
Xu, W.-X., Zhang, J., Guo, H.-W., Liu, R.-Q., Kou, Z.-M., Design of a deployable aerodynamic decelerator based on a tensegrity structure. Acta Astronaut. 215 (2024), 315–324 https://doi.org/10.1016/j.actaastro.2023.11.047.
Anderson, M.S., Robinson, J.C., Bush, H.G., Fralich, R.W., A tension shell structure for application to entry vehicles. 1965 NASA TN D-2675, https://ntrs.nasa.gov/api/citations/19650007859/downloads/19650007859.pdf. (Accessed 31 August 2024).
T. Abe, A self-consistent tension shell structure for application to aerobraking vehicle and its aerodynamic characteristics, in: 24th Joint Propulsion Conference, Boston, Massachusetts, USA, 1988, Paper AIAA 1988-3405,.
G. Brown, J. Lingard, M. Darley, J. Underwood, Inflatable aerocapture decelerators for Mars Orbiters, in: 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Williamsburg, Virginia, USA, 2007, Paper AIAA 2007-2543,.
Koyama, M., Suzuki, K., Imamura, O., Yamada, K., Study on mini re-entry system using deployable membrane aeroshell. Trans. Japan Soc. Aeronaut. Space Sci. Aerosp. Technol. Japan 7:ists26 (2009), 25–30 https://doi.org/10.2322/tstj.7.Pe_25.
A. Wachi, R. Takahashi, R. Sakagami, Y. Koshiro, Y. Kasai, S. Nakasuka, Mars Entry, Descent, and Landing by Small THz Spacecraft via Membrane Aeroshell, in: AIAA SPACE and Astronautics Forum and Exposition, Orlando, Florida, USA, 2017, Paper AIAA 2017-5313,.
Yamada, K., Moriyoshi, T., Matsumaru, K., Kanemaru, H., Araya, T., Suzuki, K., et al. Overall achievements of the flight demonstration of EGG: Re-entry nano-satellite with gossamer aeroshell and GPS/Iridium. Trans. Japan Soc. Aeronaut. Space Sci. 67:4 (2024), 224–233 https://doi.org/10.2322/tjsass.67.224.
Y. Nagata, T. Moriyoshi, F. Akiyama, T. Ohta, K. Matsuo, et al., Development and Flight Plan of Nanosatellite BEAK for Breakthrough Technology Demonstration with Deployable Aeroshell, in: 65th Space Science and Technology Alliance Lecture, Online event, 2021,. (in Japanese).
Yamada, K., Suzuki, K., Abe, T., Imamura, O., Akita, D., Research and development of deployable membrane aeroshell atmospheric entry vehicle MAAC and its future prospect. Aeronaut. Space Sci. Japan 59:695 (2011), 389–395 https://doi.org/10.14822/kjsass.59.695_389 (in Japanese).
McRonald, A.D., A light-weight inflatable hypersonic drag device for planetary entry. 2000 Jet Propulsion Laboratory, https://ntrs.nasa.gov/api/citations/20000057460/downloads/20000057460.pdf. (Accessed 31 August 2024).
Perakis, N., Hein, A.M., Combining magnetic and electric sails for interstellar deceleration. Acta Astronaut. 128 (2016), 13–20 https://doi.org/10.1016/j.actaastro.2016.07.005.
Arita, S., Yamagiwa, Y., Three-dimensional magnetohydrodynamic analysis of a magnetic sail using a deployable modular structure. J. Spacecr. Rockets 60:1 (2023), 68–78 https://doi.org/10.2514/1.A35374.
Ashida, Y., Yamakawa, H., Funaki, I., Usui, H., Kajimura, Y., Kojima, H., Thrust evaluation of small-scale magnetic sail spacecraft by three-dimensional particle-in-cell simulation. J. Propuls. Power 30:1 (2014), 777–784 https://doi.org/10.2514/1.B35026.
D. Akita, K. Suzuki, Kinetic Analysis on Plasma Flow of Solar Wind Around Magnetic Sail, in: 36th AIAA Plasmadynamics and Lasers Conference, Toronto, Ontario, Canada, 2005, Paper AIAA 2005-4791,.
Winglee, R.M., Slough, J., Ziemba, T., Goodson, A., Mini-magnetospheric plasma propulsion: Tapping the energy of the solar wind for spacecraft propulsion. J. Geophys. Res. Space Phys. 105:A9 (2000), 21067–21077 https://doi.org/10.1029/1999JA000334.
Yamakawa, H., Funaki, I., Nakayama, Y., Fujita, K., Ogawa, H., Nonaka, S., Kuninaka, H., Magneto-plasma sail: An engineering satellite concept and its application for outer planet missions. Acta Astronaut. 59 (2006), 777–784 https://doi.org/10.1016/j.actaastro.2005.07.003.
Winglee, R., Ziemba, T., Magnetized beamed plasma propulsion (MagBeam). 2005 Final Report for the Phase I study, https://earthweb.ess.washington.edu/Space/magbeam/WingleePhaseI_final.pdf. (Accessed 10 February 2024).
J. Slough, L. Giersch, The Plasma Magnet, in: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, US, 2005,.
Bassetto, M., Quarta, A.A., Mengali, G., Magnetic sail-based displaced non-Keplerian orbits. Aerosp. Sci. Technol. 92 (2019), 363–372 https://doi.org/10.1016/j.ast.2019.06.018.
Janhunen, P., On the feasibility of a negative polarity electric sail. Ann. Geophys. 27:4 (2009), 1439–1447 https://doi.org/10.5194/angeo-27-1439-2009.
Janhunen, P., Sandroos, A., Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25:3 (2007), 755–767 https://doi.org/10.5194/angeo-25-755-2007.
Mengali, G., Quarta, A.A., Janhunen, P., Electric sail performance analysis. J. Spacecr. Rockets 45:1 (2008), 122–129 http://dx.doi.org/10.2514/1.31769.
Janhunen, P., Quarta, A.A., Mengali, G., Electric solar wind sail mass budget model. Geosci. Instrum. Methods Data Syst. 2 (2013), 85–95 https://doi.org/10.5194/gi-2-85-2013.
Quarta, A.A., Mengali, G., Electric sail mission analysis for outer solar system exploration. J. Guid. Control Dyn. 33:3 (2010), 740–755 http://dx.doi.org/10.2514/1.47006.
Quarta, A.A., Mengali, G., Janhunen, P., Electric sail option for cometary rendezvous. Acta Astronaut. 127 (2016), 684–692 https://doi.org/10.1016/j.actaastro.2016.06.020.
Niccolai, L., Caruso, A., Quarta, A.A., Mengali, G., Artificial collinear Lagrangian point maintenance with electric solar wind sail. IEEE Trans. Aerosp. Electron. Syst. 56:6 (2020), 4467–4477 https://doi.org/10.1109/TAES.2020.2990805.
Huo, M., Mengali, G., Quarta, A.A., Optimal planetary rendezvous with an electric sail. Aircr. Eng. Aerosp. Technol. 88:4 (2016), 515–522 http://dx.doi.org/10.1108/AEAT-01-2015-0012.
Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., E-sail test payload of the ESTCube-1 nanosatellite. Proc. Est. Acad. Sci. 63:2S (2014), 210–221 https://doi.org/10.3176/proc.2014.2S.02.
Praks, J., Mughal, M.R., Vainio, R., Janhunen, P., Envall, J., et al. Aalto-1, multi-payload CubeSat: Design, integration and launch. Acta Astronaut. 187 (2021), 370–383 https://doi.org/10.1016/j.actaastro.2020.11.042.
P. Peitso, V. Vilenius, P. Yli-Opas, S. Chandran, Plasma brake deorbiting simulation using dynamic space environment, in: 7th Space Propulsion 2020+1 Conference, Online only, 2021, Paper SP2020-00424,.
Seppänen, H., Rauhala, T., Kiprich, S., Ukkonen, J., Simonsson, M., Kurppa, R., Janhunen, P., Hæggström, E., One kilometer (1 km) electric solar wind sail tether produced automatically. Rev. Sci. Instrum., 84(9), 2013 https://doi.org/10.1063/1.4819795.
Janhunen, P., Photonic spin control for solar wind electric sail. Acta Astronaut. 83 (2013), 85–90 https://doi.org/10.1016/j.actaastro.2012.10.017.
Janhunen, P., Electric sail, photonic sail and deorbiting applications of the freely guided photonic blade. Acta Astronaut. 93 (2014), 410–417 https://doi.org/10.1016/j.actaastro.2013.07.041.
Teichman, L.A., The fabrication and testing of PAGEOS-I. 1968 NASA TN D-4596, https://ntrs.nasa.gov/api/citations/19680016348/downloads/19680016348.pdf. (Accessed 31 August 2024).
Billman, K.W., Gilbreath, W.P., Bowen, S.W., Introductory Assessment of Orbiting Reflectors for Terrestrial Power Generation: NASA TM-X-73230., 1977, NASA Ames Research Center, Moffett Field, California https://ntrs.nasa.gov/api/citations/19790014444/downloads/19790014444.pdf. (Accessed 14 March 2024).
W.P. Gilbreath, K.W. Billman, S.W. Bowen, Enhanced solar energy options using earth-orbiting mirrors, in: 13th Intersociety Energy Conversion Engineering Conference, Vol. 2, San Diego, California, USA, 1978, pp. 1528–1534.
Canady, J.E., Allen, J.L., Illumination From Space With Orbiting Solar-Reflector Spacecraft: NASA-TP-2065., 1982, NASA Langley Research Center https://ntrs.nasa.gov/api/citations/19820025545/downloads/19820025545.pdf. (Accessed 14 March 2024).
Ehricke, K.A., Space light: space industrial enhancement of the solar option. Acta Astronaut. 6:12 (1979), 1515–1633 https://doi.org/10.1016/0094-5765(79)90003-1.
L.M. Fraas, G.A. Landis, A. Palisoc, Mirror satellites in polar orbit beaming sunlight to terrestrial solar fields at dawn and dusk, in: 2013 IEEE 39th Photovoltaic Specialists Conference, Tampa, Florida, USA, 2013, pp. 2764–2769,.
Çelik, O., Viale, A., Oderinwale, T., Sulbhewar, L., McInnes, C.R., Enhancing terrestrial solar power using orbiting solar reflectors. Acta Astronaut. 195 (2022), 276–286 https://doi.org/10.1016/j.actaastro.2022.03.015.
Viale, A., Çelik, O., Oderinwale, T., Sulbhewar, L., McInnes, C.R., A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant output. Adv. Space Res. 72:4 (2023), 1304–1348 https://doi.org/10.1016/j.asr.2023.05.037.
Çelik, O., McInnes, C.R., An investigation into a combined service of space-based solar energy and climate engineering via orbiting solar reflectors. 75th International Astronautical Congress, IAC 2024, 2024, IAF, Milan, Italy Paper no. IAC–24–D1,1,12,x83911.
Viale, A., Çelik, O., Oderinwale, T., Sulbhewar, L., Bailet, G., McInnes, C.R., Towards the commercial development of orbiting reflectors: a technology demonstration roadmap. 73rd International Astronautical Congress, IAC 2022, 2022, IAF, Paris, France Paper no. IAC–22–C3.2.x70070.
Çelik, O., McInnes, C.R., A constellation design for orbiting solar reflectors to enhance terrestrial solar energy. Acta Astronaut. 217 (2024), 145–161 https://doi.org/10.1016/j.actaastro.2024.01.031.
M.C. Bernasconi, A.R. Woods, Lights in the Sky: Membrane Structures for Art in Space, in: International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain, 2009,.
Shaenko, A., Space satellite “Mayak”. 2024 Boomstarter, https://boomstarter.ru/projects/shaenko/kosmicheskiy_sputnik_mayak (in Russian). (Accessed 31 August 2024).
S. Seager, M. Turnbull, W. Sparks, M. Thomson, S.B. Shaklan, A. Roberge, M. Kuchner, N.J. Kasdin, S. Domagal-Goldman, W. Cash, K. Warfield, D. Lisman, D. Scharf, D. Webb, R. Trabert, S. Martin, E. Cady, C. Heneghan, The Exo-S probe class starshade mission, in: SPIE Optical Engineering + Applications, Vol. 9605, San Diego, California, USA, 2015,.
Jordan, I.J.E., Schultz, A.B., Schroeder, D., Hart, H.M., Bruhweiler, F., Fraquelli, D., Hamilton, F., et al. Enhancing NGST science: UMBRAS. Next Generation Space Telescope Science and Technology Exposition, Vol. 207, 2000, 468–473 https://articles.adsabs.harvard.edu/pdf/2000ASPC.207.468J.
Copi, C.J., Starkman, G.D., The big occulting steerable satellite (BOSS). Astrophys. J. 532:1 (2000), 581–592 https://doi.org/10.1086/308525.
A.B. Schultz, I.J.E. Jordan, H.M. Hart, F. Bruhweiler, D.A. Fraquelli, et al., Imaging planets about other stars with UMBRAS II, in: International Symposium on Optical Science and Technology, Vol. 4131, San Diego, California, USA, 2000,.
Cash, W., The New Worlds Observer. 2009 Responses to questions posed by the Astro2010 Decadal Survey's Program Prioritization Panel, https://web.archive.org/web/20161118001150/http://cor.gsfc.nasa.gov/copag/rfi/149_newworlds_Cash_EOS.pdf. (Accessed 31 August 2024).
Cady, E., Belikov, R., Dumont, P., Egerman, R., Kasdin, N.J., Linfield, R., Lisman, D., Savransky, D., Seager, S., Shaklan, S., Spergel, D., Tenerelli, D., Vanderbei, R., Design of a telescope-occulter system for THEIA. 2009 arXiv, https://doi.org/10.48550/arXiv.0912.2938. (Accessed 31 August 2024).
B. Mennesson, S. Gaudi, S. Seager, A. Kiessling, K. Warfield, The Habitable Exoplanet Observatory mission concept, in: SPIE Astronomical Telescopes + Instrumentation, Vol. 11443, Online only, 2020,.
Seager, S., Kasdin, N.J., et al. Starshade rendezvous probe study report: Imaging and spectra of exoplanets orbiting our nearest sunlike star neighbors with a starshade in the 2020s. 2019 https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/Starshade2.pdf. (Accessed 31 August 2024).
S. Seager, W. Cash, S. Domagal-Goldman, N.J. Kasdin, M. Kuchner, et al., Exo-S: Starshade Probe-Class Exoplanet Direct Imaging Mission Concept, Final Report, NASA CL-15-1155, 2015,. (Accessed 31 August 2024).
Peretz, E., Mather, J.C., Pabarcius, L., Seager, S., Shaklan, S., Hildebrandt, S., Willems, P., Hall, K., Mapping the observable sky for a remote occulter working with ground-based telescopes. J. Astron. Telesc. Instrum. Syst., 7(2), 2021 https://doi.org/10.1117/1.JATIS.7.2.021212.
NeXolve, E., James Webb Space Telescope (JWST) sunshield membrane assembly (SMA). 2024 https://nexolve.com/aerospace-products/sunshields/ (Accessed 4 April 2024).
Perrygo, C., Solar shades. Jenkins, C.H.M., (eds.) Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, 2001, AIAA, Reston, Virginia, 503–526 https://doi.org/10.2514/5.9781600866616.0503.0526.
J. Arenberg, J. Flynn, A. Cohen, R. Lynch, J. Cooper, Status of the JWST sunshield and spacecraft, in: SPIE Proceedings, Edinburgh, UK, 2016, Volume 9904, Number 990405,.
Fischer, D., Peterson, B., Bean, J., Calzetti, D., Dawson, R., et al. The LUVOIR mission concept study final report. 2019 arXiv, NASA, https://doi.org/10.48550/arXiv.1912.06219. (Accessed 31 August 2024).
He, J., Zheng, F., Structural feasibility and orbital stability of a proposed huge space shield for mitigating global warming. Adv. Mech. Eng., 9(10), 2017 https://doi.org/10.1177/1687814017719227.
He, J., Zheng, F., Efficiency evaluation of huge space shield for mitigating global warming. Int. J. Glob. Warm. 18:1 (2019), 1–15 https://doi.org/10.1504/IJGW.2019.100172.
Matloff, G., The Lagrange sunshade: Its effectiveness in combating global warming and its application to Earth defense from asteroid impacts, beaming solar energy for terrestrial use, propelling interstellar migration by laser-photon sails and its technosignature. J. Br. Interplanet. Soc. 76 (2023), 130–133 https://doi.org/10.59332/jbis-076-04-0130.
Borgue, O., Hein, A.M., Transparent occulters: A nearly zero-radiation pressure sunshade to support climate change mitigation. Acta Astronaut. 203 (2023), 308–318 https://doi.org/10.1016/j.actaastro.2022.12.006.
van't Klooster, C.G.M., Rits, W., Pagana, E., Mantica, P., Bernasconi, M., An inflatable parabolic reflector antenna: Its realisation and electrical predictions. ESA J. 14 (1990), 211–216 https://pure.tue.nl/ws/portalfiles/portal/113079356/KK35_Inflat_ESAbull.pdf.
J.K.H. Lin, H. Fang, E. Im, U.O. Quijano, Concept Study of a 35-m Spherical Reflector System for NEXRAD in Space Application, in: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, USA, 2006,.
Robbins, W.M., The feasbility of an orbiting 1500-m radiotelescope. 1967 NASA-CR792, https://ntrs.nasa.gov/api/citations/19670018291/downloads/19670018291.pdf. (Accessed 31 August 2024).
Hanson, H., Campbell, B., SMAP: Soil moisture active passive. 2014 NP-2014-4-130-GSFC, https://web.archive.org/web/20150322045608/ http://www.jpl.nasa.gov/images/earth/smap/brochure/SMAP_Mission_Brochure_final.pdf. (Accessed 31 August 2024).
D. Faizullin, M. Uetsuhara, R. Takahira, J. Murayama, M. Katayama, S. Onishi, T. Yasaka, Attitude Determination and Control System for the first SAR Satellite in a Constellation of iQPS, in: 71st International Astronautical Congress, 2020, Paper IAC-20-C1.8.12-60372.
Statham, S., RainCube: Mission overview of the first radar in a CubeSat. 2022 Small Spacecraft Community of Practice, https://www.nasa.gov/wp-content/uploads/2022/02/raincube_s3vi_20220216.pdf?emrc=04b105. (Accessed 31 August 2024).
R.R. Monje, K. Cooper, J.M. Socuellamos, S.P. Mysore, R. Beauchamp, J.V. Siles, M. Lebsock, S. Tanelli, CloudCube: A Multi-frequency Solid-State Radar for Affordable Cloud and Precipitation Observations from Space, in: 2023 Earth Science Technology Forum, Pasadena, California, USA, 2023,.
M. Leipold, H. Runge, C. Sickinger, Large SAR membrane antennas with lightweight deployable booms, in: 28th ESA Antenna Workshop on Space Antenna Systems and Technologies, Noordwijk, The Netherlands, 2005,.
J. Huang, The development of inflatable array antennas, in: Proceedings of the 27th URSI General Assembly, Maastricht, The Netherlands, 2002,.
Huang, J., Lou, M., Feria, A., Kim, Y., An inflatable L-band microstrip SAR array. IEEE Antennas and Propagation Society International Symposium, 1998 https://doi.org/10.1109/APS.1998.701623.
M. Arya, J.F. Sauder, R. Hodges, S. Pellegrino, Large-Area Deployable Reflectarray Antenna for CubeSats, in: AIAA Scitech 2019 Forum, San Diego, California, USA, 2019, Paper AIAA 2019-2257,.
DARPAtv, M., Radio frequency risk reduction deployment demonstration (R3D2). 2019 YouTube, https://www.youtube.com/watch?v=Rxb45tE8Edc. (Accessed 31 August 2024).
G. Nakayama, M. Moritani, T. Tomura, H. Sakamoto, S. Koike, T. Oshino, et al., Space Demonstration of Two-layer Pop-up Origami Deployable Membrane Reflectarray Antenna by 3U CubeSat OrigamiSat-2, in: 37th Annual Small Satellite Conference, Logan, Utah, US, 2023, Paper SSC23-WVIII-03,.
Ikeya, K., Sakamoto, H., Nakanishi, H., Furuya, H., Tomura, T., et al. Significance of 3U CubeSat OrigamiSat-1 for space demonstration of multifunctional deployable membrane. Acta Astronaut. 173 (2020), 363–377 https://doi.org/10.1016/j.actaastro.2020.04.016.
A. Shirane, T. Tomura, H. Sakamoto, K. Okada, Ultra-Lightweight Deployable Antenna Membrane Technology for Future Non-Terrestrial 6G Network and Earth Observation, in: 35th AIAA/USU Conference on Small Satellites, Logan, Utah, US, 2021, Paper SSC21-WKIV-07,.
Hanson, K.L., Blake, F., Luria, N., Kyle, R., Ferguson, R., Carmichael, R., Quarterely report no. 1: Rollup subsolar array. 1969 NASA CR-103842, https://ntrs.nasa.gov/api/citations/19690024114/downloads/19690024114.pdf. (Accessed 31 August 2024).
Burns, H.D., Whitaker, A.F., Linton, R.C., Atomic oxygen resistant protective coatings for the hubble space telescope solar array in low earth orbit. Surf. Coat. Technol. 39 (1989), 627–636 https://doi.org/10.1016/S0257-8972(89)80024-6.
E.R. Schwanbeck, Developing Exploration Technologies on the International Space Station (ISS): Advanced Solar Arrays on the ISS, in: Association of Space Explorers XXXII Planetary Congress, Houston, Texas, USA, 2019,.
Mercer, C.R., Advanced solar arrays. 2014 Planetary Science Division Discovery Technology Workshop, https://discovery.larc.nasa.gov/pdf_files/02-AdvSolrArry-CMercer-2.pdf. (Accessed 31 August 2024).
Chabot, N.L., Rivkin, A.S., Cheng, A.F., Barnouin, O.S., Fahnestock, E.G., Richardson, D.C., et al. Achievement of the planetary defense investigations of the double asteroid redirection test (DART) mission. Planet. Sci. J., 5(2), 2024 https://doi.org/10.3847/PSJ/ad16e6.
Carr, J.A., Johnson, L., Boyd, D., Phillips, B., Finckenor, M., Farmer, B., Smith, J.C., LISA-T part three: The design and space environments testing of a thin-film power generation and communication array. Acta Astronaut. 205 (2023), 267–280 https://doi.org/10.1016/j.actaastro.2023.02.001.
L. Johnson, F.M. Curran, R.W. Dissly, A.F. Heaton, The Kon-Tiki Mission - Demonstrating Large Solar Sails for Deep Space Missions, in: 70th International Astronautical Congress, Washington D. C., USA, 2019,.
A. Pedivellano, T. Sinn, A. Raharijaona, M. Kringer, J. Gruber, T. Lund, A. Titz, J. Schmidt, et al., PowerCube: Design and Development of a 100 W Origami-Inspired Deployable Solar Array for NanoSatellites, in: 36th Annual Small Satellite Conference, Logan, Utah, US, 2022, Paper SSC22-I-02,.
T. Sproewitz, P. Seefeldt, S. Reershemius, M. Tokarz, P. Torchala, T. Kubera, A Deployable Membrane-Based 100 W Solar Array for SmallSats, in: 2023 13th European Space Power Conference, Elche, Spain, 2023,.
P. Seefeldt, T. Spröwitz, S. Reershemius, N. Woods, M. Tokarz, J. Grygorczuk, P. Torchala, Highly Efficient Membrane-Based Photovoltaic Array for Solar Sailing Missions, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
O. Mori, M. Matsushita, A.K. Sugihara, Y. Takao, T. Chujo, Y. Miyazaki, Y. Satou, N. Okuizumi, H. Sakamoto, R. Funase, N. Ozaki, Y. Kubo, A. Watanabe, New Solar Power Sail Program in the Post-OKEANOS Era, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
Y. Takao, O. Mori, M. Matsushita, K. Nishiyama, R. Tsukizaki, K. Tabata, N. Ozaki, Y. Kubo, R. Funase, A Rendezvous Mission to Outer Solar System Bodies Using a 100-kg-Class Solar Power Sail, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
Warmann, E.C., Espinet-Gonzalez, P., Vaidya, N., Loke, S., Naqavi, A., Vinogradova, T., Kelzenberg, M., Leclerc, C., Gdoutos, E., Pellegrino, S., Atwater, H.A., An ultralight concentrator photovoltaic system for space solar power harvesting. Acta Astronaut. 170 (2020), 443–451 https://doi.org/10.1016/j.actaastro.2019.12.032.
Ambatali, C.D., Nakasuka, S., Microwave wireless power transfer efficiency analysis framework for a thin film space solar power satellite. Adv. Space Res. 74:1 (2024), 454–470 https://doi.org/10.1016/j.asr.2024.03.072.
Space Frontier Foundation, C.D., Znamya 2.5 space reflector. 1999 https://web.archive.org/web/20060808175720/ http://www.space-frontier.org/Events/Znamya/. (Accessed 10 February 2024).
Lappas, V., Fernandez, J., Visagie, L., Stohlman, O., Viquerat, A., et al. Demonstrator flight missions at the Surrey Space Centre involving gossamer sails. Macdonald, M., (eds.) Advances in Solar Sailing, 2014, Springer, Berlin, Heidelberg, 153–167 https://doi.org/10.1007/978-3-642-34907-2_11.
K. Wilkie, J. Fernandez, Advanced Composite Solar Sail System (ACS3) Mission Update, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
E.B. Gietl, E.W. Gholdston, B.A. Manners, R.A. Delventhal, The electric power system of the International Space Station - A platform for power technology development, in: Proceedings of the 2000 IEEE Aerospace Conference, Vol. 4, Big Sky, Montana, USA, 2000, pp. 47–54,.
J. DiNonno, N. Cheatwood, Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID): Mission Overview and Science Return, in: AIAA Scitech 2024 Forum, Orlando, Florida, USA, 2024, Paper AIAA 2024-1309,.
Leipold, M., Garner, C., Freeland, R., Hermann, A., Noca, M., et al. ODISSEE — A proposal for demonstration of a solar sail in earth orbit. Acta Astronaut. 45:4 (1999), 557–566 https://doi.org/10.1016/S0094-5765(99)00176-9.
Y. Nakagawa, M. Matsushita, Y. Takao, A.K. Sugihara, O. Mori, T. Kusumoto, et al., Development of Multifunctional Lightweight Membrane Structure for Antennas and Power Generation on Small Satellites, in: 38th Annual Small Satellite Conference, Logan, Utah, US, 2024, Paper SSC24-WVIII-02,.
Miura, K., Nagatomo, M., Matsumoto, Y., Shibayama, Y., Muranaka, N., A conceptual study on a solar sail racer to the Moon. J. Space Technol. Sci. 3 (1987), 12–21 https://doi.org/10.11230/jsts.3.2_12.
T.R. Cawsey, A deployment mechanism for the double roll-out flexible solar array on the space telescope, in: 16th Aerospace Mechanics Symposium, NASA Kennedy Space Center, Florida, USA, 1982, pp. 223–233,.
Pukniel, A., Coverstone, V., Burton, R., Carroll, D., The dynamics and control of the CubeSail mission: A solar sailing demonstration. Adv. Space Res. 48:11 (2011), 1902–1910 https://doi.org/10.1016/j.asr.2011.07.014.
K.W. Billman, W.P. Gilbreath, S.W. Bowen, Space reflector technology and its system implications, in: 15th Annual Meeting and Technical Display, Washington D.C., USA, 1979,.
Atchison, J.A., Peck, M.A., A passive, sun-pointing, millimeter-scale solar sail. Acta Astronaut. 67:1 (2010), 108–121 https://doi.org/10.1016/j.actaastro.2009.12.008.
S. Asundi, Y. Amara, V. Ravi, C. Krishnaraj, N. Gattu, S.A.C. S., A. Manjunath, V.K. Agrawal, A Technology Mission to Demonstrate the Novel “Ultra-thin Wires Drag Enhancement System – UWDES”, in: AIAA SPACE and Astronautics Forum and Exposition, Orlando, Florida, USA, 2017, Paper AIAA 2017-5117,.
Chernov, K., Monakhova, U., Mashtakov, Y., Biktimirov, S., Pritykin, D., Ivanov, D., Decentralized differential aerodynamic control of microsatellites formation with sunlight reflectors. Aerospace, 10(840), 2023 https://doi.org/10.3390/aerospace10100840.
D.J. Anderson, J. Dankanich, M.M. Munk, E. Pencil, L. Liou, The NASA In-Space Propulsion Technology project's current products and future directions, in: 2010 IEEE Aerospace Conference, Big Sky, Montana, US, 2010,.
Johnson, L., Young, R., Montgomery, E., Alhorn, D., Status of solar sail technology within NASA. Adv. Space Res. 48:11 (2011), 1687–1694 https://doi.org/10.1016/j.asr.2010.12.011.
Leipold, M., Kassing, D., Eiden, M., Herbeck, L., Solar sails for space exploration - the development and demonstration of critical technologies in partnership. 1999 ESA Bulletin 98, https://www.esa.int/esapub/bulletin/bullet98/LEIPOLD.pdf. (Accessed 9 February 2024).
D. Stelzl, P. Seefeldt, M. Killian, et al., The ADEO Space Sail Products, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
Muranaka, N., Makino, T., Yokota, H., Preliminary study on flight control of solar sail racer to the Moon. J. Space Technol. Sci. 3 (1987), 22–30 https://doi.org/10.11230/jsts.3.2_22.
Japanese Rocket Society, N., Organisation overview. 2024 (in Japanese) http://www.jrocket.org/outline.html#chapter-0. (Accessed 15 February 2024).
Tsuda, Y., Saiki, T., Funase, R., Mimasu, Y., Generalized attitude model for spinning solar sail spacecraft. J. Guid. Control Dyn. 36 (2013), 967–974 https://doi.org/10.2514/1.59516.
T. Chujo, Near-Optimal Lunar-Orbit Control Using Solar Sails, in: AIAA Scitech 2024 Forum, Orlando, Florida, US, 2024, Paper AIAA 2024-0840,.
J. Kawaguchi, Performance Evaluation for the Electric Delta-V Earth Gravity Assist (EDVEGA) Scheme, in: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, California, US, 2002,.
Berthet, M., García Pérez, J.A., Enokida, K., Tenorio, L., Raj, R., SEIMEI: Mission to search for life on enceladus via small satellite with solar power sail. J. Evol. Space Activ., 1(100), 2023 https://doi.org/10.57350/jesa.100.
Greenbaum, J.R., Sailing off the edge of the earth. again. IEEE Circuits Devices Mag. 7:3 (1991), 11–17 https://doi.org/10.1109/101.79791.
Z. Syromyatnikov, Space Regatta Consortium: General Information.
NASA Space Technology Mission Directorate, J.R., GO: Advanced propulsion. 2023 https://spacetechpriorities.org/wp-content/uploads/2024/04/GO-Advanced_Propulsion-2023-08-17.pdf.
Mohon, L., NEA Scout Status Update. 2022, NASA https://www.nasa.gov/centers-and-facilities/marshall/nea-scout-status-update/. (Accessed 10 February 2024).
NASA Space Technology Mission Directorate, L., LAND: Entry, descent, and landing to enable planetary science missions. 2023 https://spacetechpriorities.org/wp-content/uploads/2024/04/LAND-EDL_to_Enable_Science_Missions-2023-08-17.pdf.
NASA Space Technology Mission Directorate, L., EXPLORE: Small spacecraft technologies. 2023 https://spacetechpriorities.org/wp-content/uploads/2024/04/EXPLORE-Small-Spacecraft-Technologies-2023-08-17.pdf.
NASA Space Technology Mission Directorate, L., EXPLORE: In-space servicing, assembly, and manufacturing (ISAM) and rendezvous, proximity operations and capture (RPOC). 2023 https://spacetechpriorities.org/wp-content/uploads/2024/04/EXPLORE-ISAM-and-RPOC-2023-08-17.pdf.
Figliozzi, G., NASA Evaluates Deployed Advanced Composite Solar Sail System. 2024, NASA https://blogs.nasa.gov/smallsatellites/2024/09/05/nasa-evaluates-deployed-advanced-composite-solar-sail-system/. (Accessed 24 September 2024).
Kobayashi, K., Johnson, L., Thomas, H., McIntosh, S., McKenzie, D., Newmark, J., Heaton, A., Carr, J., Baysinger, M., Bean, Q., Fabisinski, L., Capizzo, P., Clements, K., Sutherlin, S., Garcia, J., Medina, K., Turse, D., The high inclination solar mission. 2020 arXiv https://doi.org/10.48550/arXiv.2006.03111.
Turyshev, S., Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravitational Lens Mission. 2020, NASA https://www.nasa.gov/general/direct-multipixel-imaging-and-spectroscopy-of-an-exoplanet-with-a-solar-gravitational-lens-mission/. (Accessed 31 May 2024).
Hall, L., Swarming Proxima Centauri: Coherent Picospacecraft Swarms Over Interstellar Distances. 2024, NASA https://www.nasa.gov/general/swarming-proxima-centauri/. (Accessed 31 August 2024).
Girija, A.P., A flagship-class Uranus orbiter and probe mission concept using aerocapture. Acta Astronaut. 202 (2023), 104–118 https://doi.org/10.1016/j.actaastro.2022.10.005.
Cassell, A., Cheatwood, N., Hughes, S., Kazemba, C., Swanson, G., Deployable entry vehicles for future science and exploration missions. Bull. AAS, 53(4), 2021 https://doi.org/10.3847/25c2cfeb.ed731e3c.
A. Cassell, Deployable Entry Vehicles for Future Science and Exploration Missions, in: 2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-Entry Missions Engineering, Heilbronn, Germany, 2022,.
Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., et al. Achievement of IKAROS - Japanese deep space solar sail demonstration mission. Acta Astronaut. 82:2 (2013), 183–188 https://doi.org/10.1016/j.actaastro.2012.03.032.
M. Matsushita, O. Mori, Y. Miyazaki, Y. Satou, Y. Kubo, A.K. Sugihara, T. Kusumoto, N. Ozaki, H. Yano, R. Funase, et al., Solar Array Membrane Prototype for the OPENS-0 Small Saturn Probe, in: 38th Annual Small Satellite Conference, Logan, Utah, US, 2024, Paper SSC24-IX-06,.
Tokudome, S., Maru, Y., Nonaka, S., Medium-to long-term strategies in the field of space transportation systems formulated by the Institute of Space and Astronautical Science of the Japan Aerospace Exploration Agency under the inter-university research institute system. Space Policy, 2024 https://doi.org/10.1016/j.spacepol.2024.101623.
Committee on National Space Policy, Cabinet Office of Japan, S., Space technology strategy. 2024 28 March 2024 (in Japanese), https://www8.cao.go.jp/space/gijutu/siryou.pdf. (Accessed 31 August 2024).
JAXA, S., Low-cost elemental technologies for atmospheric entry and aerodynamic deceleration. 2024 (in Japanese), https://fund.jaxa.jp/techlist/theme14/. (Accessed 25 September 2024).
European Space Agency, S., Zero Debris approach. 2023 https://www.esa.int/Space_Safety/Clean_Space/ESA_s_Zero_Debris_approach. (Accessed 30 May 2024).
ESA, S., Clean space. 2024 Directorate of Technology, Engineering and Quality, https://technology.esa.int/program/clean-space. (Accessed 25 September 2024).
Palla, C., Kingston, J., Hobbs, S., Development of commercial drag-augmentation systems for small satellites. 7th European Conference on Space Debris, 2017 https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/455/SDC7-paper455.pdf.
Seefeldt, P., Spietz, P., Sproewitz, T., Grundmann, J.T., Hillebrandt, M., Hobbie, C., Ruffer, M., Straubel, M., Tóth, N., Zander, M., Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft. Adv. Space Res. 59:1 (2017), 434–456 https://doi.org/10.1016/j.asr.2016.09.022.
Little, A.D., Pre-Phase A system study of a commercial-scale space-based solar power (SBSP) system for terrestrial needs. 2023 https://nebula.esa.int/sites/default/files/neb_study/3131/ESA%20TALDA%20-%20Final%20Report.Revision1.2_VF%20%282%29.pdf.
European Patent Institute, A.D., European Space Policy Institute, P., ESA, T., Propulsion systems for space. 2024 Vienna, Austria, https://link.epo.org/web/business/patent-insight-reports/en-propulsion-systems-for-space.pdf.
Boni, L., Bassetto, M., Niccolai, L., Mengali, G., Quarta, A.A., Circi, C., Pellegrini, R.C., Cavallini, E., Structural response of Helianthus solar sail during attitude maneuvers. Aerosp. Sci. Technol., 133, 2023, 108152 https://doi.org/10.1016/j.ast.2023.108152.
G. Vulpetti, C. Circi, R. Pellegrini, E. Cavallini, ASI Project Helianthus: Solar-Photon Sailcraft for Geostorm Early Warning, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
Mungiguerra, S., Savino, R., Vernillo, P., Ferracina, L., Punzo, F., Mini-IRENE, a successful re-entry flight of a deployable heatshield capsule. Mater. Res. Proc. 37 (2023), 530–533 https://doi.org/10.21741/9781644902813-116.
Advanced Research and Innovation Agency, S., Exploring options for actively cooling the Earth. 2024 https://www.aria.org.uk/wp-content/uploads/2024/05/ARIA-Actively-cooling-the-earth-programme.pdf.
European Commission, S., Large deployable technologies for space. 2024 https://cordis.europa.eu/project/id/284474. (Accessed 25 September 2024).
European Commission, S., Electric solar wind sail EU FP7 project. 2024 https://www.electric-sailing.fi/fp7/index.html. (Accessed 25 September 2024).
M. Genzer, P. Janhunen, H. Haukka, A. Kestilä, M. Hieta, P. Peitso, Project DragLiner: Harnessing plasma Coulomb drag for satellite deorbiting to keep orbits clean, in: EGU General Assembly 2023, Vienna, Austria, 2023, Paper EGU 23-14692,.
M. Genzer, P. Janhunen, P. Yli-opas, P. Peitso, H. Haukka, M. Hieta, H. Laurila, P. Pietikäinen, H. Hallamaa, J. Sinkko, P. Toivanen, J. Polkko, B.C. Yalcin, M. Olivares-Mendez, D. Macieira, Dragliner - Tether Based System for Passive Spacecraft Deorbiting Using Coulomb Drag, in: Europlanet Science Congress 2024, Berlin, Germany, 2024, Paper EPSC 2024-852,.
H. Jiang, International Lunar Research Station: Guide for Partnership, in: 64th Session of the Committee on the Peaceful Uses of Outer Space, Vienna, Austria, 2021,.
The People's Republic of China State's Council, H., China's space program: A 2021 perspective. 2022 https://english.www.gov.cn/archive/whitepaper/202201/28/content_WS61f35b3dc6d09c94e48a467a.html. (Accessed 21 May 2024).
Chandrashekar, S., Strategic trends and future directions. China's Space Programme: From the Era of Mao Zedong to Xi Jinping, 2022, Springer Nature, Singapore, 61–100 https://doi.org/10.1007/978-981-19-1504-8_5.
The State Council, The People's Republic of China, S., China's first flexible inflatable cargo re-entry vehicle return capsule to return on the 6th. 2020 (in Chinese), https://www.gov.cn/xinwen/2020-05/05/content_5508962.htm. (Accessed 25 September 2024).
Clark, S., Experimental Chinese cargo return capsule malfunctions during re-entry. 2020 Spaceflight Now, https://spaceflightnow.com/2020/05/06/experimental-chinese-cargo-return-capsule-malfunctions-during-re-entry/. (Accessed 25 September 2024).
Zhao, P., Wu, C., Li, Y., Design and application of solar sailing: A review on key technologies. Chin. J. Aeronaut. 36:5 (2023), 125–144 https://doi.org/10.1016/j.cja.2022.11.002.
Liu, J., Zhao, P., Wu, C., Chen, K., Ren, W., et al. SIASAIL-I solar sail: From system design to on-orbit demonstration mission. Acta Astronaut. 192 (2022), 133–142 https://doi.org/10.1016/j.actaastro.2021.11.034.
F. Zheng, M. Chen, J. He, Analyses of a Huge Space Shield to Weaken the Global Warming, in: AIAA SPACE 2012 Conference and Exposition, Pasadena, California, USA, 2012,.
British Broadcasting Corporation (BBC), F., Fake moon: Could China really light up the night sky?. 2018 https://www.bbc.com/news/world-asia-china-45910479, (Accessed 21 May 2024).
Fan, A., China to study assembly mechanics of kilometer-level extra-large spacecraft. 2021 https://www.globaltimes.cn/page/202108/1232426.shtml, (Accessed 21 May 2024).
European Space Policy Institute, A., On-orbit servicing, assembly, and manufacturing. 2023 Full Report 87, Vienna, Austria, https://www.espi.or.at/wp-content/uploads/2023/10/Final-Report-OSAM-1.pdf.
Duan, B., Large spaceborne deployable antennas (LSDAs)—a comprehensive summary. Chin. J. Electron. 29:1 (2020), 1–15, 10.1049/cje.2019.09.001.
Department of Space, B., An Indian Will Land on the Surface of Moon, Fifteen Years from Now, in the Year 2040, Announces Union Minister Dr Jitendra Singh. 2024, Government of India, Press Information Bureau https://pib.gov.in/PressReleasePage.aspx?PRID=2048125. (Accessed 27 September 2024).
Dutt, A., Union Cabinet approves Venus mission, Indian Space Station Among 4 Key Isro Projects. 2024, The Indian Express https://indianexpress.com/article/india/union-cabinet-approves-venus-mission-indian-space-station-isro-projects-9574515/. (Accessed 27 September 2024).
Indian Space Research Organisation, A., List of completed RESPOND projects from 2000 - July, 2023. 2023 https://www.isro.gov.in/media_isro/pdf/programme/List_of_Completed_RESPOND_Projects_From_2000_to_July_2023.pdf. (Accessed 21 May 2024).
Hegde, S.R., Sahay, D., Sandya, S., Sandeep, G., Nikhilesh, K., et al. Design and development of inter-satellite separation mechanism for twin nano satellite—STUDSAT-2. IEEE Aerospace Conference, 2016, IEEE, 1–8, 10.1109/AERO.2016.7500841.
Indian Space Research Organisation, S.R., Research areas in space - Inflated structures for space applications (C9). 2023 https://www.isro.gov.in/media_isro/pdf/programme/Research_Areas_in_Space_for_web2023.pdf. (Accessed 21 May 2024).
Indian Space Research Organisation, Ongoing Projects under Space Technology Cells (As of July 2023), Tech. Rep., 2023,. (Accessed 21 May 2024).
European Space Policy Institute, S.R., In-orbit services. 2020 Full Report 76, Vienna, Austria, https://www.espi.or.at/wp-content/uploads/2022/06/ESPI-Report-76-In-Orbit-Services.pdf.
Yoshikawa, M., Kawaguchi, J., Fujiwara, A., Tsuchiyama, A., Hayabusa sample return mission. Michel, P., DeMeo, F.E., Bottke, W.F., (eds.) Asteroids IV, 2015, The University of Arizona Press, Tucson, 397–418 (Chapter 21). https://doi.org/10.2458/azu_uapress_9780816532131-ch021.
J. Kampmeier, R. Larsen, L.F. Migliorini, K.A. Larson, Reaction Wheel Performance Characterization Using the Kepler Spacecraft as a Case Study, in: SpaceOps Conference, Marseille, France, 2018, Paper AIAA 2018-2563,.
Rodgers, E., Gertsen, E., Sotudeh, J., Mullins, C., Hernandez, A., Le, H.N., Smith, P., Joseph, N., Space-Based Solar Power: Report ID 20230018600., 2024, NASA Office of Technology, Policy, and Strategy https://www.nasa.gov/wp-content/uploads/2024/01/otps-sbsp-report-final-tagged-approved-1-8-24-tagged-v2.pdf?emrc=744da1.
Fuller, S., Lehnhardt, E., Zaid, C., Halloran, K., Gateway program status and overview. J. Space Saf. Eng. 9:4 (2022), 625–628 https://doi.org/10.1016/j.jsse.2022.07.008.
NASA, S., Civil space shortfall ranking. 2024 https://www.nasa.gov/wp-content/uploads/2024/07/civil-space-shortfall-ranking-july-2024.pdf?emrc=66ebc308a58de.
Çelik, O., McInnes, C.R., A generic three-dimensional model for solar energy reflected from mirrors in circular orbits. Adv. Space Res. 72:11 (2023), 5047–5069, 10.1016/j.asr.2023.09.046.
Çelik, O., McInnes, C.R., An analytical model for solar energy reflected from space with selected applications. Adv. Space Res. 69:1 (2022), 647–663, 10.1016/j.asr.2021.10.033.
Çelik, O., McInnes, C.R., Enhancing planetary exploration using orbiting solar reflectors. 45th COSPAR Scientific Assembly, 2024, COSPAR, Busan, South Korea.
Aghili, F., Rey, D., Dumping momentum on the Lunar Gateway using a robotically steerable solar sail. J. Guid. Control Dyn. 43:10 (2020), 1952–1959, 10.2514/1.G005037.
Berthet, M., Yamada, K., Nagata, Y., Suzuki, K., Feasibility assessment of passive stabilisation for a nanosatellite with aeroshell deployed by orbit-attitude-aerodynamics simulation platform. Acta Astronaut. 173 (2020), 266–278 https://doi.org/10.1016/j.actaastro.2020.04.043.
Hodges, R.E., Chahat, N., Hoppe, D.J., Vacchione, J.D., A deployable high-gain antenna bound for Mars: Developing a new folded-panel reflectarray for the first CubeSat mission to Mars. IEEE Antennas Propag. Mag. 59:2 (2017), 39–49.
Levison, H.F., Marchi, S., Noll, K., Olkin, C., Statler, T.S., The Lucy Science Team. NASA's Lucy mission to the Trojan asteroids. 2021 IEEE Aerospace Conference, 2021, 1–10 https://doi.org/10.1109/AERO50100.2021.9438453.
Ozaki, N., Yamamoto, T., Gonzalez-Franquesa, F., Gutierrez-Ramon, R., Pushparaj, N., Chikazawa, T., Dei Tos, D.A., Çelik, O., Marmo, N., Kawakatsu, Y., et al. Mission design of DESTINY+: Toward active asteroid (3200) Phaethon and multiple small bodies. Acta Astronaut. 196 (2022), 42–56, 10.1016/j.actaastro.2022.03.029.
Garcia Yárnoz, D., Sánchez, J.-P., McInnes, C.R., Easily retrievable objects among the NEO population. Celest. Mech. Dyn. Astron. 116 (2013), 367–388 https://doi.org/10.1007/s10569-013-9495-6.
I. Moore, O. Çelik, T. Oderinwale, L. Sulbhewar, A. Viale, C.R. McInnes, SOLSPACE Solar Reflectors: Commonalities with Solar Sailing, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
M.S. Murbach, S. Schisler, A. Salas, J. Alvarellos, T. Stone, et al., TechEdSat 7, 10, 13, 15: Exo-brake Experiments on the ISS, First Virgin Orbit, and First Firefly-Alpha Test Flights, in: Cubesat Developers Workshop, San Luis Obispo, California, US, 2023,.
SBUDNIC, M.S., SBUDNIC (or) the little satellite that could. 2024 https://www.sbudnic.space/. (Accessed 25 September 2024).
Aurora Propulsion Technologies, M.S., About us. 2024 https://aurorapt.fi/about/. (Accessed 31 August 2024).
H. Sakamoto, T. Tomura, A. Ochi, K. Nagai, M. Moritani, G. Nakayama, T. Oshino, Space Demonstration of Two-layer Deployable Membrane Reflectarray Antenna with Popup Book Mechanism, in: AIAA SciTech Forum, Orlando, Florida, USA, 2024,.
B. Taylor, S. Fellowes, B. Dyer, A. Viquerat, G. Aglietti, A modular drag-deorbiting sail for large satellites in low Earth orbit, in: AIAA Scitech 2020 Forum, Orlando, Florida, US, 2020, Paper AIAA 2020-2166,.
Cosmobloom, B., Home. 2024 (in Japanese). https://cosmo-bloom.com/. (Accessed 26 March 2024).
D. Sengupta, M. Berthet, K. Fujino, K. Tanaka, O. Çelik, A.M. Hein, From Interplanetary to Interstellar: Current Status of Exploration using Space Sails And Required Developments, in: 1st European Interstellar Symposium, Luxembourg City, Luxembourg, 2024, (accepted for presentation).
Johnson, L., Young, R.M., Montgomery I.V., E.E., Recent advances in solar sail propulsion systems at NASA. Acta Astronaut. 61:1 (2007), 376–382 https://doi.org/10.1016/j.actaastro.2007.01.047.
V. Lappas, N. Adeli, L. Bisagie, T. Theodorou, J. Fernandez, W. Steyn, Cubesat Solar Sail Attitude Determination and Control System Hardware Design and Orbital Analysis, in: AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ontario, Canada, 2010,.
Spencer, D.A., Betts, B., Bellardo, J.M., Diaz, A., Plante, B., Mansell, J.R., The LightSail 2 solar sailing technology demonstration. Adv. Space Res. 67:9 (2021), 2878–2889 https://doi.org/10.1016/j.asr.2020.06.029.
The Planetary Society, D.A., LightSail, a Planetary Society solar sail spacecraft. 2024 https://www.planetary.org/sci-tech/lightsail. (Accessed 10 February 2024).
Gama, D.A., Gama launches its Gama Alpha solar sail mission. 2023 Notion, https://gamaproject.notion.site/Gama-launches-its-Gama-Alpha-solar-sail-mission-6421331fade145de8393ad0b0c7769a5. (Accessed 10 February 2024).
Wilkie, K., Fernandez, J., Stohlman, O., Warren, J., Rose, G., et al. HIPERSail: High-performance small spacecraft solar sail system. Heliophysics Technology Demonstration Industry Day, 2018, Science Mission Directorate, NASA https://soma.larc.nasa.gov/STP/tdmo/pdf_files/HIPERSail_NASA_LaRC_0517p.pdf.
A. Dono, T. Hendriks, K. Wilkie, ACS3 - Flight Dynamics for a Solar Sail Technology Demonstration Mission, in: 6th International Symposium on Space Sailing, New York, USA, 2023,.
K. Reese, A. Martin, D. Acton, STPSat-3: The benefits of a multiple-build, standard payload interface spacecraft bus, in: 28th Annual Small Satellite Conference, Logan, Utah, US, 2014, Paper SSC14-V-3,.
MMA Design, K., Case study: De-orbit. 2024 https://mmadesignllc.com/dragnet-deorbit-case-study/. (Accessed 10 February 2024).
M.S. Murbach, P. Papadopoulos, C. Glass, A. Dwyer-Ciancolo, R.W. Powell, et al., Modeling the Exo-Brake and the Development of Strategies for De-Orbit Drag Modulation, in: International Planetary Probe Workshop, Laurel, Maryland, US, 2016,.
Miyazaki, Y., Tada, N., Inoue, S., Tamura, A., Yamazaki, M., Space verification of advanced deployable structure by using nano-satellite. 7th International Conference on Recent Advances in Space Technologies, RAST, 2015, 793–796 Istanbul, Turkey, https://doi.org/10.1109/RAST.2015.7208448.
ESA, Y., SPROUT (Space research on unique technology). 2014 eoPortal, Satellite Missions Catalogue, https://www.eoportal.org/satellite-missions/sprout. (Accessed 10 February 2024).
Serfontein, Z., Kingston, J., Hobbs, S., Holbrough, I.E., Beck, J.C., Drag augmentation systems for space debris mitigation. Acta Astronaut. 188 (2021), 278–288 https://doi.org/10.1016/j.actaastro.2021.05.038.
Sykes, J., TechDemoSat-1 on-board camera captures drag sail deployment. 2019 SSTL, https://www.sstl.co.uk/media-hub/latest-news/2019/techdemosat-1-on-board-camera-captures-drag-sail-deployment. 2019 (Accessed 10 February 2024).
SSTL, J., EO & science platforms - CARBONITE-1. 2015 https://web.archive.org/web/20151026175251/https://www.sstl.co.uk/Products/EO-Science-Platforms/CARBONITE-1. (Accessed 10 February 2024).
O.R. Stohlman, V. Lappas, Development of the Deorbitsail flight model, in: Spacecraft Structures Conference, National Harbor, Maryland, US, 2014,.
ESA, O.R., DeOrbitSail. 2013 eoPortal, Satellite Missions Catalogue, https://www.eoportal.org/satellite-missions/deorbitsail. (Accessed 10 February 2024).
Murbach, M., TechEdSat-4: Nano-Satellite Series: FS-2015-02-06-ARC, NASA Facts., 2015, NASA https://www.nasa.gov/wp-content/uploads/2022/01/techedsat4-508-13april2015.pdf. (Accessed 10 February 2024).
ESA, M., Canx-7 (Canadian advanced nanospace experiment-7). 2013 eoPortal, Satellite Missions Catalogue, https://www.eoportal.org/satellite-missions/canx-7. (Accessed 10 February 2024).
B. Cotten, I. Bennett, R.E. Zee, On-orbit results from the CanX-7 drag sail deorbit mission, in: 31st Annual Small Satellite Conference, Logan, Utah, US, 2017, Paper SSC17-X-06,.
Murbach, M., Technical Education Satellite Series: TechEdSat-5: FS-2017-04-09-ARC, NASA Facts., 2017, NASA https://www.nasa.gov/wp-content/uploads/2022/01/techedsat5-factsheet-508-april2017.pdf?emrc=b20b8b. (Accessed 10 February 2024).
ESA, M., TechEdSat-5. 2016 eoPortal, Satellite Missions Catalogue, https://www.eoportal.org/satellite-missions/techedsat-5. (Accessed 10 February 2024).
Murbach, M., TechEdSat-6. 2023, Space Station Research Explorer, NASA https://www.nasa.gov/mission/station/research-explorer/investigation/?#id=7499. (Accessed 10 February 2024).
N. Bellini, D. Rastelli, NPC Spacemind, in: Clean Space Industrial Days, Noordwijk, The Netherlands, 2018,.
Aglietti, G.S., Taylor, B., Fellowes, S., Salmon, T., Retat, I., et al. The active space debris removal mission RemoveDebris. Part 2: In orbit operations. Acta Astronaut. 168 (2020), 310–322 https://doi.org/10.1016/j.actaastro.2019.09.001.
Roszkowski, D., PW-Sat2, Critical Design Review, Project Overview. 2016, Students’ Space Association, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology https://pw-sat.pl/wp-content/uploads/2014/07/PW-Sat2-C-00.00-Overview-CDR.pdf. (Accessed 10 February 2024).
Roszkowski, D., Successful first phase of the PW-Sat2 satellite mission. 2018 https://pw-sat.pl/en/successful-first-phase-of-the-pw-sat2-satellite-mission/. (Accessed 10 February 2024).
Vanreusel, J., The ESEO mission. 2018 https://www.esa.int/Education/ESEO/The_ESEO_Mission. (Accessed 10 February 2024).
Davis, G.L., Tanimoto, R.L., Mechanical development of antenna systems. Spaceborne Antennas for Planetary Exploration, 2006, John Wiley & Sons, 425–454 https://doi.org/10.1002/0470052783.ch8.
D.A. Litteken, Inflatable Technology: Using Flexible Materials to Make Large Structures, in: SPIE Smart Structures & Nondestructive Evaluation 2019, Denver, Colorado, US, 2019,.
NASA, D.A., Echo 2. 2024 NASA Space Science Data Coordinated Archive, https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-004A. (Accessed 10 February 2024).
Chmielewski, A.B., Overview of gossamer structures. Jenkins, C.H.M., (eds.) Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, 2001, AIAA, Reston, Virginia, 1–33 https://doi.org/10.2514/5.9781600866616.0001.0033.
Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R.D., Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M.W., Thurman, S.W., Tsang, L., Van Zyl, J., The soil moisture active passive (SMAP) mission. Proc. IEEE 98:5 (2010), 704–716 https://doi.org/10.1109/JPROC.2010.2043918.
Thomson, M.W., The AstroMesh deployable reflector. IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1999, 1516–1519 https://doi.org/10.1109/APS.1999.838231.
Peral, E., Tanelli, S., Statham, S., Joshi, S., Imken, T., Price, D., Sauder, J., Chahat, N., Williams, A., RainCube: the first ever radar measurements from a CubeSat in space. J. Appl. Remote Sens., 13(3), 2019 https://doi.org/10.1117/1.JRS.13.032504.
D. Murphy, MegaFlex - The Scaling Potential of UltraFlex Technology, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, USA, 2012,.
AEC-Able Engineering, D., UltraFlex: flexible blanket solar array. 2002 https://web.archive.org/web/20020424045335/http://aec-able.com/solar/ultraflex.htm. (Accessed 31 August 2024).
T. Kobayashi, N. Kaneko, T. Hirose, T. Sumita, H. Uchida, H. Shiomi, M. Imaizumi, Structural and Mechanical Design and Development of Thin Membrane Solar Array Paddle (TMSAP) on Rapid Innovative payload demonstration Satellite-1 (RAPIS-1), in: 61st JSASS/JSME/JAXA Structures Conference, Nagano City, Japan, 2019, Paper JSASS-2019-3070, (in Japanese).
H. Uchida, T. Sumita, M. Imaizumi, H. Shiomi, A. Okamoto, Y. Tsutsui, M. Washiya, T. Kobayashi, N. Kanko, T. Nakao, On-orbit Demonstration and Behavior of Deployment of Thin Membrane Solar Array Paddle (TMSAP) on RAPid Innovative payload demonstration Satellite-1 (RAPIS-1), in: 61st JSASS/JSME/JAXA Structures Conference, Nagano City, Japan, 2019, Paper JSASS-2019-3071, (in Japanese).
Kobayashi, T., Hirose, T., Kaneko, N., Ose, T., Development of the world's highest-performance thin membrane solar array paddle. NEC Tech. J. 16:1 (2021), 162–166 https://www.nec.com/en/global/techrep/journal/g21/n01/pdf/210133.pdf.
B. Hoang, S. White, B. Spence, S. Kiefer, Commercialization of Deployable Space Systems’ roll-out solar array (ROSA) technology for Space Systems Loral (SSL) solar arrays, in: 2016 IEEE Aerospace Conference, Big Sky, Montana, USA, 2016,.
R.C. Hunter, E.F. Agasid, C.E. Baker, J.V. Treptow, D.J. Mayer, S. Phan, R.D. Rosee, J. Stupl, J.L. Fishman, NASA Small Spacecraft Technology (SST) Program - Recent and Upcoming Technology Demonstrations and Development Efforts, in: Small Satellites Systems and Services Symposium, Palma, Spain, 2024,.
Dankanich, J.W., Frederick, R.L., Morris, H.C., Research and Technology Report 2022: NASA/TM-20230000685., 2023, NASA Marshall Space Flight Center https://ntrs.nasa.gov/api/citations/20230000685/downloads/20230000685_Revised_20230331.pdf. (Accessed 31 August 2024).
Berthet, M., Sengupta, D., Çelik, O., Hein, A., Fujino, K., Schalkwyk, J., Tenorio, L., Cardoso dos Santos, J., Database on space sails. 2024 Mendeley Data, https://doi.org/10.17632/pr6pk3xmsp.
J. Wright, J. Warmke, Solar sail mission applications, in: Astrodynamics Conference, San Diego, California, US, 1976,.
McInnes, C.R., Mission application case studies. Solar Sailing: Technology, Dynamics and Mission Applications, 1999, Springer, London, 229–270 https://doi.org/10.1007/978-1-4471-3992-8_6.
Leipold, M., Seboldt, W., Lingner, S., Borg, E., Herrmann, A., Pabsch, A., Wagner, O., Brückner, J., Mercury sun-synchronous polar orbiter with a solar sail. Acta Astronaut. 39:1 (1996), 143–151 https://doi.org/10.1016/S0094-5765(96)00131-2.
J.-Y. Prado, A. Perret, G. Pignolet, Using a Solar Sail for a Plasma Storm Early Warning System, in: Environment Modelling for Space-Based Applications, ESTEC Noordwijk, Netherlands, 1996, ESA SP-392,.
Vulpetti, G., 3D high-speed escape heliocentric trajectories by all-metallic-sail low-mass sailcraft. Acta Astronaut. 39:1 (1996), 161–170 https://doi.org/10.1016/S0094-5765(96)00133-6.
R. Blomquist, Solar blade nanosatellite development: Heliogyro deployment, dynamics, and control, in: 13th Annual Small Satellite Conference, Logan, Utah, US, 1999,.
Leipold, M., Eiden, M., Garner, C.E., Herbeck, L., Kassing, D., et al. Solar sail technology development and demonstration. Acta Astronaut. 52:2 (2003), 317–326 https://doi.org/10.1016/S0094-5765(02)00171-6.
Leipold, M., To the sun and pluto with solar sails and micro-sciencecraft. Acta Astronaut. 45:4 (1999), 549–555 https://doi.org/10.1016/S0094-5765(99)00175-7.
Dachwald, B., Seboldt, W., Richter, L., Multiple rendezvous and sample return missions to near-Earth objects using solar sailcraft. Acta Astronaut. 59:8 (2006), 768–776 https://doi.org/10.1016/j.actaastro.2005.07.061.
B. Derbes, G. Veal, J. Rogan, C. Chafer, Team Encounter Solar Sails, in: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, US, 2004,.
Macdonald, M., Hughes, G.W., McInnes, C.R., Lyngvi, A., Falkner, P., Atzei, A., Solar polar orbiter: A solar sail technology reference study. J. Spacecr. Rockets 43:5 (2006), 960–972 https://doi.org/10.2514/1.16408.
Falkner, P., The Solar Polar Orbiter. 2019, Technology Reference Study, ESA https://sci.esa.int/web/trs/-/36025-the-solar-polar-orbiter. (Accessed 11 February 2024).
R. Burton, V. Coverstone, J. Hargens-Rysanek, K. Ertmer, T. Botter, et al., UltraSail - Ultra-Lightweight Solar Sail Concept, in: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, US, 2005,.
Macdonald, M., McInnes, C., Hughes, G., Technology requirements of exploration beyond Neptune by solar sail propulsion. J. Spacecr. Rockets 47:3 (2012), 472–483 https://doi.org/10.2514/1.46657.
Falkner, P., The Interstellar Heliopause Probe. 2019, Technology Reference Study, ESA https://sci.esa.int/web/trs/-/36022-the-interstellar-heliopause-probe. (Accessed 11 February 2024).
Macdonald, M., Hughes, G.W., McInnes, C., Lyngvi, A., Falkner, P., Atzei, A., GeoSail: An elegant solar sail demonstration mission. J. Spacecr. Rockets 44 (2007), 784–796 https://doi.org/10.2514/1.22867.
Falkner, P., GeoSail. 2019, Technology Reference Study, ESA https://sci.esa.int/web/trs/-/38980-geosail. (Accessed 11 February 2024).
Grundmann, J.T., Bauer, W., Biele, J., Boden, R., Ceriotti, M., et al. Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs. Acta Astronaut. 156 (2019), 330–362 https://doi.org/10.1016/j.actaastro.2018.03.019.
Geppert, U., Biering, B., Lura, F., Block, J., Straubel, M., Reinhard, R., The 3-step DLR-ESA Gossamer road to solar sailing. Adv. Space Res. 48:11 (2011), 1695–1701 https://doi.org/10.1016/j.asr.2010.09.016.
Barnes, N.C., Derbes, W.C., Player, C.J., Diedrich, B.L., Sunjammer: A solar sail demonstration. Macdonald, M., (eds.) Advances in Solar Sailing, 2014, Springer, Berlin, Heidelberg, 115–126 https://doi.org/10.1007/978-3-642-34907-2_8.
Wilkie, W.K., Warren, J.E., Horta, L.G., Lyle, K.H., Juang, J.-N., et al. Heliogyro solar sail research at NASA. Macdonald, M., (eds.) Advances in Solar Sailing, 2014, Springer, Berlin, Heidelberg, 631–650 https://doi.org/10.1007/978-3-642-34907-2_39.
Kelly, P.W., Bevilacqua, R., Mazal, L., Erwin, R.S., TugSat: Removing space debris from geostationary orbits using solar sails. J. Spacecr. Rockets 55:2 (2018), 437–450 https://doi.org/10.2514/1.A33872.
Pezent, J.B., Sood, R., Heaton, A., Miller, K., Johnson, L., Preliminary trajectory design for NASA's Solar Cruiser: A technology demonstration mission. Acta Astronaut. 183 (2021), 134–140 https://doi.org/10.1016/j.actaastro.2021.03.006.
G. Pignolet, P. Munoz, V. Ponamale, A. Perret, J. Kawaguchi, K. Ogimoto, Folding, Deploying and Controlling the Payankeu Solar Sailcraft, in: 33rd International Symposium on Space Technology and Science, Beppu, Oita, Japan, 2022, Paper 2022-f-26,.
Helvajian, H., Rosenthal, A., Poklemba, J., Battista, T.A., DiPrinzio, M.D., Neff, J.M., McVey, J.P., Toth, V.T., Turyshev, S.G., Mission architecture to reach and operate at the focal region of the solar gravitational lens. J. Spacecr. Rockets, 60(3), 2023 https://doi.org/10.2514/1.A35493.
Hall, L., DEEP IN Directed Energy Propulsion for Interstellar Exploration. 2015, NASA https://www.nasa.gov/general/deep-in-directed-energy-propulsion-for-interstellar-exploration/. (Accessed 31 August 2024).
P. Gloyer, T. Robinson, A. Mignogna, Y. Ahmad, Aerobraking to Lower Apogee in Earth Orbit with the Small Payload ORbit Transfer (SPORT) Microsatellite Vehicle, in: 15th AIAA/USU Conference on Small Satellites, Logan, Utah, US, 2001, Paper SSC01-XI-8,.
M. Kruijff, E.J. van de Heide, E. Dragoni, D. Castagnetti, S. Ferretti, Concept selection and design of the inherently safe re-entry capsule for YES2, in: 54th International Astronautical Congress, Bremen, Germany, 2007, Paper IAC-03-V.3.08,.
Roberts, P.C.E., Harkness, P.G., Drag sail for end-of-life disposal from low Earth orbit. J. Spacecr. Rockets 44:6 (2007), 1195–1203 https://doi.org/10.2514/1.28626.
Kasiri, A., Fani Saberi, F., Shokri Khanghah, R., Drag sail conceptual design for satellite orbit reduction in low earth orbit. J. Technol. Aerosp. Eng. 5:1 (2021), 29–43 https://doi.org/10.22034/jtae.2021.129748.
JAXA Research and Development Directorate, A., Deploying the membrane in space to demonstrate a de-orbit mechanism using atmospheric resistance. 2022 (in Japanese), https://www.kenkai.jaxa.jp/kakushin/interview/03/interview03_08.html. (Accessed 31 August 2024).
Zubrin, R.M., Andrews, D.G., Magnetic sails and interplanetary travel. J. Spacecr. Rockets 28:2 (1991), 197–203 https://doi.org/10.2514/3.26230.
R. Zubrin, The use of magnetic sails to escape from low earth orbit, in: 27th Joint Propulsion Conference, Sacramento, California, US, 1991,.
Janhunen, P., Lebreton, J.-P., Merikallio, S., Paton, M., Mengali, G., Quarta, A.A., Fast E-sail Uranus entry probe mission. Planet. Space Sci. 104 (2014), 141–146 https://doi.org/10.1016/j.pss.2014.08.004.
B.M. Wiegmann, Heliopause Electrostatic Rapid Transit System (HERTS), in: 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, Florida, USA, 2015, Paper AIAA 2015-4250,.
Yamaguchi, K., Yamakawa, H., Electric solar wind sail kinetic energy impactor for asteroid deflection missions. J. Astronaut. Sci. 63 (2016), 1–22 https://doi.org/10.1007/s40295-015-0081-x.
Anger, M., Niemelä, P., Cheremetiev, K., et al. Foresail-2: Space physics mission in a challenging environment. Space Sci. Rev., 219(66), 2023 https://doi.org/10.1007/s11214-023-01012-7.
H.M. Hart, I.J. Jordan, A.B. Schultz, J.L. Hershey, M. Kochte, F.C. Hamilton, D.A. Fraquelli, D.J. Schroeder, F. Bruhweiler, M.A. DiSanti, C.L. Miskey, et al., Imaging planets about other stars with UMBRAS: target acquisition and station keeping, in: International Conference on Application of Photonic Technology, Vol. 4087, Quebec City, Canada, 2000, pp. 993–1003,.
Cash, W., Detection of Earth-like planets around nearby stars using a petal-shaped occulter. Nature 442 (2006), 51–53 https://doi.org/10.1038/nature04930.
N.J. Kasdin, E.J. Cady, P.J. Dumont, P.D. Lisman, S.B. Shaklan, R. Soummer, D.N. Spergel, R.J. Vanderbei, Occulter design for THEIA, in: SPIE Optical Engineering + Applications, Vol. 7440, San Diego, California, USA, 2009,.
Peretz, E., Mather, J.C., Hall, K., Pabarcius, L., Canzoniero, C.M., Gilchrist, K., Lieber-Kotz, M., Slonaker, R., Yu, W.H., Hughes, S., Hur-Diaz, S., Koenig, A., D'Amico, S., Exoplanet imaging scheduling optimization for an orbiting starshade working with extremely large telescopes. J. Astron. Telesc. Instrum. Syst., 7(2), 2021 https://doi.org/10.1117/1.JATIS.7.2.021213.
Koenig, A., D'Amico, S., Orbit Design and Control for the Earth-Orbiting Starshade Mission: TN-19-02., 2019, Space Rendezvous Laboratory, Department of Aeronautics and Astronautics, Stanford University https://slab.sites.stanford.edu/sites/g/files/sbiybj25201/files/media/file/tn2019_koenigdamico.pdf. (Accessed 31 August 2024).
H. Fang, E. Im, Mechanical Technology Development on A 35-m Deployable Radar Antenna for Monitoring Hurricanes, in: Earth Science Technology Conference, College Park, Maryland, USA, 2006,.
T. Tomura, H. Sakamoto, Y. Takeda, G. Nakayama, T. Yanagi, M. Moritani, S. Koike, Y. Takeda, S. Tamura, K. Nagai, S. Kanamaru, Two-layer Pop-up Origami Deployable Membrane Reflectarray Antenna Stowed in 1U CubeSat, in: 36th Annual Small Satellite Conference, Logan, Utah, US, 2022, Paper SSC22-WKVI-05,.
Nakasuka, S., Funase, R., Nakada, K., Kaya, N., Mankins, J.C., Large membrane “Furoshiki Satellite” applied to phased array antenna and its sounding rocket experiment. Acta Astronaut. 58:8 (2006), 395–400 https://doi.org/10.1016/j.actaastro.2005.12.010.
D.M. Murphy, M.I. Eskenazi, M.E. McEachen, J.W. Spink, UltraFlex and MegaFlex - Development of highly scalable solar power, in: 2015 IEEE 42nd Photovoltaic Specialist Conference, New Orleans, Louisiana, USA, 2015,.
R. Funase, S. Nakajima, N. Ozaki, H. Yano, JAXA's Solar System Exploration Program with Small Satellites: From PROCYON and EQUULEUS to Outer Solar System Exploration, in: 38th Annual Small Satellite Conference, Logan, Utah, US, 2024,.