Article (Périodiques scientifiques)
Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity.
DE LANDTSHEER, Sébastien; BADKAS, Apurva; Kulms, Dagmar et al.
2024In Briefings in Bioinformatics, 25 (6)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
bbae567.pdf
Postprint Auteur (1.59 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
CCLE; cancer; machine-learning; pharmacosensitivity; predictive algorithm; Antineoplastic Agents; Humans; Antineoplastic Agents/therapeutic use; Antineoplastic Agents/pharmacology; Cell Line, Tumor; Computational Biology/methods; Precision Medicine/methods; Multiomics; Neoplasms/drug therapy; Neoplasms/genetics; Neoplasms/metabolism; Machine Learning; Computational Biology; Neoplasms; Precision Medicine; Information Systems; Molecular Biology
Résumé :
[en] Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DE LANDTSHEER, Sébastien ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
BADKAS, Apurva  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine > Team Thomas SAUTER
Kulms, Dagmar;  Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany ; National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
SAUTER, Thomas  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity.
Date de publication/diffusion :
23 septembre 2024
Titre du périodique :
Briefings in Bioinformatics
ISSN :
1467-5463
eISSN :
1477-4054
Maison d'édition :
Oxford University Press, England
Volume/Tome :
25
Fascicule/Saison :
6
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 18 novembre 2024

Statistiques


Nombre de vues
111 (dont 0 Unilu)
Nombre de téléchargements
26 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu