[en] Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
DE LANDTSHEER, Sébastien ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
BADKAS, Apurva ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Life Sciences and Medicine > Team Thomas SAUTER
Kulms, Dagmar; Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany ; National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
SAUTER, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity.
Ritchie H, Roser M. Causes of deathOurWorldInData.org. 2022. [Online]. Available: https://ourworldindata.org/causes-ofdeath.
Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res 2012;18:930-7. https://doi.org/10.1158/1078-0432.CCR-10-1613.
Zhang T, Dutton-Regester K, Brown KM. et al. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res 2016;29:266-83. https://doi.org/10.1111/pcmr.12459.
Govindan R, Ding L, Griffith M. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 2012;150:1121-34. https://doi.org/10.1016/j.cell.2012.08.024.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74. https://doi.org/10.1016/j.cell. 2011.02.013.
Paull EO, Aytes A, Jones SJ. et al. A modular master regulator landscape controls cancer transcriptional identity. Cell 2021;184:334-351.e20.https://doi.org/10.1016/j.cell.2020.11.045.
Levine AJ. Spontaneous and inherited TP53 genetic alterations. Oncogene 2021;40:5975-83. https://doi.org/10.1038/ s41388-021-01991-3.
Sholl LM. A narrative review of BRAF alterations in human tumors: diagnostic and predictive implications. Precis Cancer Med 2020;3:26-6. https://doi.org/10.21037/pcm-20-39.
Bedard PL, Hyman DM, Davids MS. et al. Small molecules, big impact: 20 years of targeted therapy in oncology. The Lancet 2020;395:1078-88. https://doi.org/10.1016/S0140-6736(20 )30164-1.
Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies 2020;9:34. https://doi.org/10.3390/antib9030034.
Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020;5:22. https://doi.org/10.1038/s41392-020-0116-z.
Barretina J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603-7. https://doi.org/10.1038/nature11003.
Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precis Oncol 2019;3:6. https://doi. org/10.1038/s41698-019-0078-1.
Rafique R, Islam SMR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J 2021;19:4003-17. https://doi.org/10.1016/j.csbj.2021.07.003.
Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform 2022;23:bbab408. https://doi.org/10.1093/ bib/bbab408.
Weinstein JN, Myers TG, O'Connor PM. et al. An informationintensive approach to the molecular pharmacology of cancer. Science 1997;275:343-9. https://doi.org/10.1126/science. 275.5298.343.
Staunton JE, Slonim DK, Coller HA. et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci 2001;98: 10787-92. https://doi.org/10.1073/pnas.191368598.
van 't Veer LJ, Dai H, van de Vijver MJ. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6. https://doi.org/10.1038/415530a.
Gönen M, Margolin AA. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning. Bioinformatics 2014;30:i556-63. https://doi.org/10.1093/ bioinformatics/btu464.
Garnett MJ, Edelman EJ, Heidorn SJ. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012;483:570-5. https://doi.org/10.1038/nature11005.
Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 2014;15:R47-12. https://doi. org/10.1186/gb-2014-15-3-r47.
Suphavilai C, Bertrand D, Nagarajan N. Data and text mining predicting cancer drug response using a recommender system. Bioinformatics 2018;34:3907-14. https://doi.org/10.1093/ bioinformatics/bty452.
Chiu Y-C, Chen HIH, Zhang T. et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genomics 2019;12:18. https://doi.org/10.1186/ s12920-018-0460-9.
Sakellaropoulos T, Vougas K, Narang S. et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep 2019;29:3367-3373.e4. https://doi.org/10.1016/j.celrep. 2019.11.017.
Chang Y, Park H, Yang HJ. et al. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep 2018;8:8857-11. https://doi.org/10.1038/s41598-018-27214-6.
Kong J, Lee H, Kim D. et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 2020;11:5485. https://doi. org/10.1038/s41467-020-19313-8.
Pu L, Singha M, Ramanujam J. et al. CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling. Oncotarget 2022;13:695-706. https://doi.org/10.18632/ oncotarget.28234.
Menden MP, Iorio F, Garnett M. et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PloS One 2013;8:e61318. https://doi.org/10.1371/ journal.pone.0061318.
Zhang N, Wang H, Fang Y. et al. Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput Biol 2015;11:e1004498. https://doi. org/10.1371/journal.pcbi.1004498.
Masumshah R, Eslahchi C. DPSP: a multimodal deep learning framework for polypharmacy side effects prediction. Bioinforma Adv 2023;3:vbad110. https://doi.org/10.1093/bioadv/ vbad110.
Masumshah R, Aghdam R, Eslahchi C. A neural network-based method for polypharmacy side effects prediction. BMC Bioinformatics 2021;22:385. https://doi.org/10.1186/s12859-021-04298-y.
Hassanali Aragh A, Givehchian P, Moslemi Amirani R. et al. MiRAGE: mining relationships for advanced generative evaluation in drug repositioning. Brief Bioinform 2024;25:bbae337. https://doi.org/10.1093/bib/bbae337.
Wang F, Zhuang Z, Gao F. et al. TMO-net: an explainable pretrained multi-omics model for multi-task learning in oncology. Genome Biol 2024;25:149. https://doi.org/10.1186/ s13059-024-03293-9.
Jiang L, Xu C, Bai Y. et al. Autosurv: interpretable deep learning framework for cancer survival analysis incorporating clinical and multi-omics data. NPJ Precis Oncol 2024;8:4. https://doi. org/10.1038/s41698-023-00494-6.
Costello JC, Heiser LM, Georgii E. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014;32:1202-12. https://doi.org/10. 1038/nbt.2877.
Matlock K, Niz CD, Rahman R. et al. Investigation of model stacking for drug sensitivity prediction. BMC Bioinformatics 2018;19:71. https://doi.org/10.1186/s12859-018-2060-2.
Iorio F, Knijnenburg TA, Vis DJ. et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016;166:740-54. https:// doi.org/10.1016/j.cell.2016.06.017.
Parikh JR, Klinger B, Xia Y. et al. Discovering causal signaling pathways through gene-expression patterns. Nucleic Acids Res 2010;38:W109-17. https://doi.org/10.1093/nar/gkq424.
Weiss BD, Wolters PL, Plotkin SR. et al. NF106: a Neurofibromatosis clinical trials consortium phase II trial of the MEK inhibitor mirdametinib (PD-0325901) in adolescents and adults with NF1-related plexiform neurofibromas. J Clin Oncol Off J Am Soc Clin Oncol 2021;39:797-806. https://doi.org/10.1200/ JCO.20.02220.
Casey D, Demko S, Sinha A. et al. FDA approval summary: selumetinib for plexiform neurofibroma. Clin Cancer Res 2021;27: 4142-6. https://doi.org/10.1158/1078-0432.CCR-20-5032.
Fujiwara K, Hasegawa K, Nagao S. Landscape of systemic therapy for ovarian cancer in 2019: primary therapy. Cancer 2019;125: 4582-6. https://doi.org/10.1002/cncr.32475.
Morabito A, Piccirillo MC, Falasconi F. et al. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist 2009;14:378-90.https://doi.org/10.1634/theoncologist. 2008-0261.
Wilhelm S, Carter C, Lynch M. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835-44. https://doi.org/10.1038/nrd2130.
Williams TE, Subramanian S, Verhagen J. et al. Discovery of RAF265: a potent Mut-B-RAF inhibitor for the treatment of metastatic melanoma. ACS Med Chem Lett 2015;6:961-5. https:// doi.org/10.1021/ml500526p.
Dickler MN, Cobleigh MA, Miller KD. et al. Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res Treat 2009;115:115-21. https:// doi.org/10.1007/s10549-008-0055-9.
Sai K, Saito Y, Sakamoto H. et al. Importance of UDPglucuronosyltransferase 1A16 for irinotecan toxicities in Japanese cancer patients. Cancer Lett 2008;261:165-71. https:// doi.org/10.1016/j.canlet.2007.11.009.
Gwak J, Jeong H, Lee K. et al. SFMBT2-mediated infiltration of preadipocytes and TAMs in prostate cancer.Cancer 2020;12:2718. https://doi.org/10.3390/cancers12092718.
Wang J, Xu X, Liu Z. et al. LEPREL1 expression in human hepatocellular carcinoma and its suppressor role on cell proliferation. Gastroenterol Res Pract 2013;2013:1-7. https://doi. org/10.1155/2013/109759.
Tsang YH, Mills GB. The roles of MAGEA6 variants in pancreatic cancer development and their potential impact on cancer immunotherapy. Autophagy 2020;16:1923-4. https://doi. org/10.1080/15548627.2020.1802091.
Zhang B, Ramkumar K, Cardnell RJ. et al. A wake-up call for cancer DNA damage: the role of schlafen 11 (SLFN11) across multiple cancers. Br J Cancer 2021;125:1333-40. https:// doi.org/10.1038/s41416-021-01476-w.
Debebe Z, Rathmell WK. Ror2 as a therapeutic target in cancer. Pharmacol Ther 2015;150:143-8. https://doi.org/10.1016/j. pharmthera.2015.01.010.
Liu D, Enriquez L, Ford CE. ROR2 is epigenetically regulated in endometrial cancer. Cancer 2021;13:383. https://doi.org/10.3390/ cancers13030383.
Roy R, Huang Y, Seckl MJ. et al. Emerging roles of hnRNPA1 in modulating malignant transformation. WIREs RNA 2017;8: e1431. https://doi.org/10.1002/wrna.1431.
Mei J, Xu B, Hao L. et al. Overexpressed DAAM1 correlates with metastasis and predicts poor prognosis in breast cancer. Pathol Res Pract 2020;216:152736. https://doi.org/10.1016/j. prp.2019.152736.
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res 2017;77:3965-81. https://doi. org/10.1158/0008-5472.CAN-16-2634.
Ren Z-H, Yu CQ, Li LP. et al. SAWRPI: a stacking ensemble framework with adaptive weight for predicting ncRNA-protein interactions using sequence information. Front Genet 2022;13:839540. https://doi.org/10.3389/fgene.2022.839540.
Raynaud CM, Ahmed EI, Jabeen A. et al. Modulation of SLFN11 induces changes in DNA damage response. Cancer Cell Int 2023;23:291. https://doi.org/10.1101/2023.04.02.535254.
Zoppoli G, Regairaz M, Leo E. et al. Putative DNA/RNA helicase schlafen-11 (SLFN11) sensitizes cancer cells to DNAdamaging agents. Proc Natl Acad Sci 2012;109:15030-5. https:// doi.org/10.1073/pnas.1205943109.
Wang Y, Wei Q, Chen Y. et al. Identification of hub genes associated with sensitivity of 5-f luorouracil based chemotherapy for colorectal cancer by integrated bioinformatics analysis. Front Oncol 2021;11:604315. https://doi.org/10.3389/fonc.2021. 604315.
Rodriguez AC, Vahrenkamp JM, Berrett KC. et al. ETV4 is necessary for estrogen signaling and growth in endometrial cancer cells. Cancer Res 2020;80:1234-45. https://doi. org/10.1158/0008-5472.CAN-19-1382.
Cheng T, Zhang Z, Cheng Y. et al. ETV4 promotes proliferation and invasion of lung adenocarcinoma by transcriptionally upregulating MSI2. Biochem Biophys Res Commun 2019;516: 278-84. https://doi.org/10.1016/j.bbrc.2019.06.115.
Zhang R, Peng Y, Gao Z. et al. Oncogenic role and drug sensitivity of ETV4 in human tumors: a pan-cancer analysis. Front Oncol 2023;13:1121258. https://doi.org/10.3389/fonc.2023.1121258.
Koledova Z, Zhang X, Streuli C. et al. SPRY1 regulates mammary epithelial morphogenesis by modulating EGFR-dependent stromal paracrine signaling and ECM remodeling. Proc Natl Acad Sci 2016;113:E5731-40. https://doi.org/10.1073/pnas.1611532 113.
Shi Y, Li J, Liu Y. et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol Cancer 2015;14:51. https:// doi.org/10.1186/s12943-015-0318-0.
Zhou M, Zhang X-Y, Yu X. Overexpression of the long noncoding RNA SPRY4-IT1 promotes tumor cell proliferation and invasion by activating EZH2 in hepatocellular carcinoma. Biomed Pharmacother 2017;85:348-54. https://doi.org/10.1016/j. biopha.2016.11.035.
Xie M, Nie FQ, Sun M. et al. Decreased long noncoding RNA SPRY4-IT1 contributing to gastric cancer cell metastasis partly via affecting epithelial-mesenchymal transition. J Transl Med 2015;13:250. https://doi.org/10.1186/s12967-015-0595-9.
Ghafouri-Fard S, Khoshbakht T, Taheri M. et al. A review on the role of SPRY4-IT1 in the carcinogenesis. Front Oncol 2022;11:779483. https://doi.org/10.3389/fonc.2021.779483.
Tsavachidou D, Coleman ML, Athanasiadis G. et al. SPRY2 is an inhibitor of the Ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 2004;64:5556-9. https://doi.org/10.1158/0008-5472.CAN-04-1669.
Wu J. CMTM5/7 are biomarkers and prognostic factors in human breast carcinoma. Cancer Biomark 2020;29:89-99. https://doi. org/10.3233/CBM-191226.
Barretina J, Caponigro G, Stransky N. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012;483:603-7. https://doi.org/10.1038/ nature11003.
Dong Z, Zhang N, Li C. et al. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer 2015;15:489. https://doi. org/10.1186/s12885-015-1492-6.
Koras K, Juraeva D, Kreis J. et al. Feature selection strategies for drug sensitivity prediction. Sci Rep 2020;10:9377-12. https://doi. org/10.1038/s41598-020-65927-9.
Horak P, Heining C, Kreutzfeldt S. et al. Comprehensive genomic and transcriptomic analysis for guiding therapeutic decisions in patients with rare cancers. Cancer Discov 2021;11:2780-95. https://doi.org/10.1158/2159-8290.CD-21-0126.
Rodon J, Soria JC, Berger R. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat Med 2019;25:751-8. https://doi.org/10.1038/ s41591-019-0424-4.
Schwaederle M, Zhao M, Lee JJ. et al. Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol 2015;33:3817-25. https://doi.org/10.1200/ JCO.2015.61.5997.
Schwaederle M, Zhao M, Lee JJ. et al. Association of biomarkerbased treatment strategies with response rates and progressionfree survival in refractory malignant neoplasms: a metaanalysis. JAMA Oncol 2016;2:1452-9. https://doi.org/10.1001/ jamaoncol.2016.2129.
Varrette S, Cartiaux H, Peter S. et al. Management of an academic HPC & research computing facility: The ULHPC experience 2.0. In: 2022 6th High Performance Computing and Cluster Technologies Conference (HPCCT), pp. 14-24. Fuzhou China: ACM, 2022. https://doi.org/10.1145/3560442. 3560445.