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Abstract

Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the
accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain
enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these
predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework
based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental
compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our
dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness.
We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell
lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for
several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity
of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of
drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful
tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to
therapeutic compounds.
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Introduction
Despite major breakthroughs in targeted tumor treatment options
over the past few decades, cancer remains the second leading
cause of deaths worldwide [1]. One of the reasons for this is
the fact that intervention strategies are exclusively based on the
mutation status of key oncogenic drivers of a specific tumor type.
However, tumors present with high heterogeneity, even within a
certain tissue, and despite similar clinical features. The degree of
heterogeneity itself is highly variable: a number of hematological
malignancies are defined by precise chromosomal alterations,
for example the reciprocal translocation t(9;22)(q34;q11) result-
ing in the chimeric BCR-ABL protein in virtually all cases of
chronic myeloid leukemia [2]. In contrast many different driver
mutations are implicated in the most common tumor types,
especially melanoma [3] and lung adenocarcinoma [4]. Above
this, tumor heterogeneity is constantly reinforced by the fact
that most tumors are deficient in proper deoxyribonucleic acid
(DNA) repair, thereby further increasing their mutational load.
The cancer hallmarks [5], a set of phenotypic capabilities shared
by all tumors and central to their emergence and evolution toward
malignancy, have been shown to be highly polygenic, while the
main cancer genes are pleiotropic [6], and are found to be mutated
across tumor types. For example loss- or gain-of function muta-
tions of the transcription factor p53 (TP53) occur in ∼50% of
all human cancers [7]. Moreover activating mutations of the
mitogen-activated kinase BRAF can be found across a variety of
cancers, including melanoma, colon adenocarcinoma, and glioma
[8]. While dozens of chemotherapeutics, cytotoxic or targeted
compounds have been approved for cancer treatment over the
past decades, they will only be efficacious in a subset of cancer
patients, mainly because additional pathophysiological modifica-
tions, involving differential expression of genes/proteins within
the oncogenic signal transduction network may contribute to
therapy resistance.

Subsequent to the identification of druggable molecules within
this network, targeted therapeutics were designed to interfere
with a specific protein, either via a small compound, like tyrosine
kinase inhibitors, or a specific antibody [9, 10]. Despite the increas-
ing knowledge on cancer-specific signal transduction and the
development of targeted drugs, initial response rates of patients
remain low, or they may quickly acquire resistance [11]. It is
therefore essential to expand the arsenal of stratification tools to
better identify tailored drug regimens to increase response rates
and decrease unnecessary treatment burden and side effects for
cancer patients. Ultimately, the goal of personalized oncology is
to be able to treat each cancer patient based on the unique array
of characteristics of their tumors, and in the context of their
germline genomes and clinical histories.

In order to capture the multiple layers of the regulatory net-
work ultimately contributing to cancer development and pro-
gression, large-scale screenings have been performed to charac-
terize panels of cell lines across multiple omics levels, together
with measurements of drug responsiveness. The Cancer Cell Line
Encyclopedia (CCLE) dataset [12] presents the most prominent
results of such screening efforts, containing data on more than a
thousand cell lines of various cancer types and subtypes including
high-quality multi-omic data and pharmacological characteriza-
tion, and has been shown to enable predictive modeling of drug
responsiveness [12].

Key points in the application of artificial intelligence to pre-
cision oncology have been highlighted elsewhere in excellent
reviews [13–15]. The NCI-60 cell line panel pioneered the use of a

large screening to discover characteristics of cell lines indicative
of chemosensitivity [16]. Modeling was first applied to the problem
of predicting cell line chemosensitivity by Staunton et al. [17], orig-
inally a simple weighted voting scheme. Later, a genetic signature
based on the expression of 70 marker genes was used to predict
the clinical outcome of breast cancer patients [18]. Mathematical
modeling was then extended to various frameworks, notably the
use of kernel methods [19], regularized linear regressions, such
as the Elastic Net or the LASSO [20], regression, and classifica-
tion trees [21], matrix factorization [22], then to various neural-
networks-based algorithms like Deep Learning [23–25] and Graph
Convolutional Networks [26, 27]. A number of studies included
the chemical structure of compounds as a component of their
models [28, 29]. In addition, a number of interesting studies have
investigated the application of multi-omic models to predict the
effect of drugs, including side effects [30–32]. Recent efforts to
integrate multiple omic types in a modified deep-learning frame-
work comprise TMO-Net [33] and AutoSurv [34]. Despite continu-
ous improvements, predictions formed with simple, interpretable
methods usually fail to reach validation in a clinical setting,
and the best performing pre-clinical methods, often composed of
complex black-box algorithms, lack interpretability.

Notably, the NCI-DREAM challenge [35], which compared the
predictions of 44 teams for a breast-cancer sensitivity prediction
task, concluded that differences in performance between the
algorithms can mostly be attributed to data quality, preprocess-
ing strategies, and choice of the reported variable, rather than
the family of the method used. It also clarified that predictions
based on the combinations of individual teams’ algorithms always
outcompeted the best of the individual methods, showing that
different methods provide complementary information.

Therefore, a method to combine predictions of the various
methods is needed. Stacking [36] is an ensemble learning tech-
nique that first trains a series of classifiers on labeled training
data, then trains a second-level generalizer aiming to learn the
biases of the individual classifiers with respect to the true labels
of the training set. Stacked ensembles have been shown to lower
the predictor bias and, in any case, produce results that are no
worse than the best individual model [37].

In this paper, we hypothesize that while each individual omic
type contains only a partial signal, it is possible to combine the
imperfect information gathered from each biological layer into an
integrated picture of the particular tumor and deduce the drug-
resistant versus drug-sensitive profile. We also hypothesize that
once a ‘black-box’ model is established, it is possible to retrieve
the most important sources of predictive signals, combine them
in a top-down manner, to engineer an explainable interpretable
model, which could be evaluated in a clinical setting in the
future. Importantly, we assume that while heterogeneity between
patients, and therefore between cell lines, is large, homologies can
be extracted given a large enough sample size, allowing to learn
robust correlations between molecular and functional states.

Methods
Data source
CCLE data files were downloaded directly from the DepMap
portal (https://depmap.org/portal/). For transcriptomics, we
used the provided file CCLE_RNAseq_genes_rpkm_20180929.gct
containing rpkm values (reads per kilobase per million reads
mapped) for 56 202 transcripts. We did not aggregate the
data at the gene level to allow for discovery of splice variants
associated with functional response. For genomics, we used the
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file CCLE_MUT_CNA_AMP_DEL_binary_Revealer.csv summarizing
the presence versus absence of specific genetic features for
all cell lines as a Boolean table. For the micro ribonucleic
acid (miRNA), we used the file CCLE_miRNA_20181103.csv
containing fpkm (fragments per kilobase of transcript per million
fragments mapped) values for 974 miRNAs. The metabolomics
data consisted of profiles for 225 metabolites, determined by
Liquid Chromatography Mass Spectrometry (LS-MS) in the file
CCLE_metabolomics_20190502.csv. For the proteomics data, we
used the file CCLE_RPPA_20181003.csv consisting of reverse-phase
protein array (RPPA) measurements of 214 proteins including
protein modifications. In addition, we included the estimates
of pathway activity found in the file 1-s2.0-S0092867416307462-
mmc6.xlsx from the GDSC study [38] for the samples included
in both GDCS and CCLE databases. These pathway activities
were pre-computed from gene expression using the algorithm
SPEED [39].

The 23 drugs studied in this paper are AEW541, nilotinib,
17-AAG, PHA-665752, lapatinib, nutlin-3, AZD0530, PF2341066,
L-685458, ZD-6474, panobinostat, sorafenib, topotecan, LBW242,
PD-0325901, PD-0332991, paclitaxel, AZD6244, PLX4720, RAF265,
TAE684, TKI258, and erlotinib.

Preprocessing
Table S1 describes the filtering steps that were applied to each
dataset. Briefly, quantitative data was log-transformed and nor-
malized to the [0, 1] interval to facilitate modeling. We avoided the
need for data imputation by removing samples and features with
missing data. Then, we applied a simple feature selection scheme,
by first removing a proportion of features showing low variance
across the samples, and subsequently removing highly cross-
correlated features. We extracted cancer type (tissue of origin)
for each sample from the samples’ names. The pre-processed
dataset used in following steps contained a total of 324 samples
from 23 different cancer types, and 48 453 features. Drug response
information, in the form of the ActArea (normalized area over
the drug-response curve, a proxy for cell line sensitivity which
takes partial response into account, in contrast with the IC50) was
collected for the 23 compounds (topotecan was removed from
the dataset as data for this drug was incomplete) and quantized
into three categories: resistant (one-third of cell lines with the
smallest ActArea), sensitive (one-third of cell lines with the largest
ActArea), and intermediate. This latter stratum was excluded
from subsequent modeling steps, to exaggerate the differences
between resistant and sensitive cell lines and to avoid mislabeling.
While this drug-agnostic labeling might not be the most appropri-
ate for all compounds and may not accurately reflect the levels
of drug responsiveness of samples in a clinical context, it has the
advantage of framing the study as a simple binary classification
problem on a balanced dataset, thus avoiding the need for multi-
class models, over/undersampling and data augmentation, which
would possibly induce more serious biases on the methodology
and the interpretation of the results.

Stacking methodology
The following nested cross-validation procedure was used to build
the classifiers for each drug. In the first step, the dataset was
split into a ‘training’ set (90% of samples) and a ‘test’ set (10% of
samples). The ‘training’ set was then split further into a ‘training
A’ set (81% of samples) and ‘training B’ (9% of samples). Then,
first-level algorithms (see Supplementary methods) were trained
independently on the ‘training A’ set of samples, using in turn
each one of the seven omic layers, to form a prediction of the

probability of class membership (sensitive or resistant) of each
sample. These trained models were then used to predict the class
of the samples in the ‘training B’ set. This procedure was repeated
over 10 non-overlapping splits of the ‘training’ set, producing
quantitative predictions for each sample in the ‘training’ set, as
well as for the ‘test’ set (using in that case algorithms trained on
the whole ‘training’ set). These probabilities of class memberships
were then used to train a second-level random forest: using the
‘training’ predictions (cumulated over the 10 splits) to form a com-
bined prediction of class membership for the samples in the ‘test’
set, therefore using predictions formed on all omic layers. This
complete procedure was repeated 10 times in order to produce
a final prediction for every sample in the dataset while avoiding
data leakage. The procedure is illustrated in Fig. 1.

Explainable models
Drawing from the previous analyses and to propose clinically
applicable tools, we built simple predictive models. For each drug,
we focused on the transcriptomic data, and we restricted the
number of predictors to the top three genes showing the highest
importance in previous analyses. The selected genes for each drug
are compiled in Supplementary Table S2. Furthermore, we only
considered three types of models, chosen for their simplicity of
interpretation: linear regression, logistic regression, and single
decision tree. The magnitude of the coefficients of the regression
models and the structure of the tree can be interpreted biolog-
ically in a straightforward manner. We trained the three model
types independently for each drug and selected the model with
the largest area under the receiver operating curve (AUROC). To
test our models on another sample set than the one from which
the features were selected, we recovered the samples that were
excluded at the beginning of the analysis because one of the data
types (usually the proteomics) was absent. In total, we recovered
695 samples with both drug and transcriptomic information.

Results
Ensembles can predict sensitivity versus
resistance for both cytotoxic and targeted drugs
In this study, we sought to evaluate the performance of stacked
classifiers (random forests) for the task of discriminating the most
sensitive cell lines from the least sensitive ones, in the CCLE
database of drug response profiles. These classifiers were based
on the predictions of first-level learners (both tree-based and
regression-based), trained independently on specific molecular
features of the cell lines: genomics, transcriptomics including
miRNomics, proteomics, metabolomics, as well as the tissue of
origin and 11 pathway-level features. The complete pre-processed
dataset comprised 48 453 features for 324 cell lines.

We generated quantitative predictions by applying a two-step
10-fold nested cross-validation scheme and used them to com-
pute the AUROC for each drug-specific classifier. Seven classifiers
obtain an AUROC >0.75 (Fig. 2). AUROC values for the remaining
16 classifiers ranged from 0.509 to 0.721. Supplementary Fig. S1
shows the results for the complete set of 23 compounds.

Furthermore, we retrieved the feature importances from the
classifiers, with the hypothesis that the predictive signal in each
omic type might be best recovered by certain types of algorithms,
but also drug-specific. We computed the average feature
importance for each combination of omic and first-level classifier
across the 10-folds (Fig. 3). A clear separation between a branch
containing the seven compounds for which excellent results
were obtained and the others can be observed, indicating that

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
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Figure 1. Schematized procedure. The CCLE dataset preprocessing and filtering resulted in a data matrix of 23 anti-cancer compounds and 324 cell
lines, with dose-response curves for each combination, and multiomic data for each cell line. 10 different machine-learning algorithms were trained to
predict sensitivity separately on each omic type, resulting in 70 predictions. The final prediction is made by an ensemble random forest integrating the
predictions of the first-level algorithms. This ensemble model is assessed by cross-validation and examined for the importance of individual features.

Figure 2. ROC curves showing the performance of the seven best predictive models. The jagged curves show the model performances as the relationship
between sensitivity (true positive rate, y-axis) and specificity (false negative rate, x-axis) for different decision thresholds. The dashed line shows the
theoretical performance of a random model.

responses to these seven compounds (panobinostat, paclitaxel,
irinotecan, lapatinib, erlotinib, PD-0325901, and AZD6244) are
more easily predictable. Also visible are 3 main branches of
features: one containing 12 combinations of omic/algorithm
with the highest contributions and enriched in transcriptomics
datasets, another containing 14 combinations with very low

contributions and grouping all combinations using the k-
nearest neighbors and ridge regression algorithms, and a third
one containing the remaining combinations with intermediate
contributions. This seems to indicate that transcriptomic data
carries more information that is useable by our method to predict
functional responses.
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Figure 3. Clustergram of the average feature importance of the different combinations of omic types and predictive algorithms. The dendrograms were
computed using the UPGMA algorithm and Euclidian distance. The dashed lines delimitate clusters of drugs and algorithm+datasets combinations
with notable differences. RPPA: proteomics; RNA: transcriptomics; DNA: genomics; MIRNA: micro-RNAs; TYPE: cell type of origin; META: metabolomics;
PATHWAYS: SPEED pathway activities; RFC: random forest classifier; ET: extra-trees classifier; XGB: XGBoost classifier; Ada: AdaBoost classifier; EN:
elastic net classifier; Ridge: Ridge regression classifier; KNN: k-nearest neighbors classifier.

Classifier performances are tissue
type-dependent
Because the cell type of origin of a tumor is nearly always known,
we sought to estimate the performance of the classifiers on
specific cancer types, with the two caveats that, by subsampling
our balanced dataset, we introduce a degree of imbalance in the
sample, and that many of the 23 cancer types are represented only
by a low number of cell lines. We therefore report the balanced
accuracy (BA) which is the average of specificity and sensitivity,
by cell type and drug (Fig. 4). The values are omitted when the
total number of cell lines is inferior to 10.

BA was found to be highly dependent of the compound and
of the cell type of origin of the tumor. For example, in the case
of PD-0325901 (mirdametinib, an investigational MEK inhibitor
[40]), high performance was achieved in the cases of colorectal
cancer (BA = 1.0 for 13 sensitive and 1 resistant cell line), lung
adenocarcinoma (BA = 0.91 for 17 sensitive and 25 resistant cell
lines), and hematopoietic tumors (BA = 0.94 for 16 sensitive and
13 resistant cell lines). In contrast, performance for skin cancers
(melanomas) reached only a BA of 0.5 for 15 sensitive and 2
resistant cell lines. In the case of AZD6244 (selumetinib, another
MEK inhibitor approved for neurofibromatosis type I and pediatric
neurofibromas [41]), the largest performance was found for breast
tumors (BA = 0.96 for 1 sensitive and 12 resistant cell lines), while
performance was much more modest for other cancer types. Clas-
sifiers for Paclitaxel showed remarkable performance on ovarian
cancer (BA = 0.88 for 4 sensitive and 7 resistant cell lines), a cancer
type for which this drug is often part of the first-line treatment
[42], and melanoma (BA = 0.82 for 5 sensitive and 10 resistant
cell lines), although this latter cancer type is more rarely treated
with cytotoxic compounds. Other notable large performances
are the ones of two classifiers on pancreatic cell lines: ZD-6474
(vandetanib [43], a VEGFR/EGFR inhibitor) scoring BA = 0.83 for
5 sensitive and 9 resistant cell lines and sorafenib [44], a large-
spectrum kinase inhibitor (BA = 0.96 for 6 sensitive and 9 resistant
cell lines), the RAF/VEGFR2 inhibitor RAF265 [45] for ovarian

cancer (BA = 0.85 for 9 sensitive and 2 resistant cell lines), and
the EGFR inhibitor Erlotinib [46] for breast cancer (BA = 0.85 for
5 sensitive and 10 negative cell lines). Supplementary Table S3
shows the performance of the classifiers for all drugs.

Most important features point to known and new
biomarkers
Then, we retrieved the feature importances of the underlying
first-level models, or the absolute weights in the case of
regression-based algorithms, and computed the average rank
of each feature across the 100 sub-folds, separately for each
compound.

Our analysis of the importance of the individual features in the
different omic-specific datasets indicated that many alterations,
including expression of specific genes or phosphoproteins, was
reliably utilized by the different first-level algorithms to build
their predictions. Independently for each compound and each
omic type, we ranked the features according to their importance,
which we calculated either, for tree-based algorithms, as the
proportion of internal nodes using this feature, or in the case of
regression-based algorithms, as the absolute value of the coeffi-
cients. We collected these ranks over the 100-folds of the cross-
validation scheme.

For Panobinostat, the largest contributions were from the sup-
port vector machine (SVM) and logistic classifiers, trained on tran-
scriptomics data (Fig. 3). These classifiers ranked the same four
transcripts as the most informative features: AC138623.1 (ZNF141
pseudogene), AC011242.6 (a pseudogene transcribed from the
reverse strand of the PLEKHH2 gene), ZNF215 [47], and SFMBT2 [48].
The same four features were also picked by the RFC algorithm.

The main contributing algorithms and dataset were the same
for paclitaxel, and both SVM and logistic models pointed to a high
importance of LEPREL2 [49] and MAGEA6 [50], as well as SLFN11
[51] and RCOR2 [52, 53].

The main contributions for irinotecan were the AdaBoost and
Extra-Trees algorithms (Fig. 3), trained on the transcriptomic data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
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Figure 4. Heatmap of the BA of drug-specific predictive models against specific tumor types. BA is not reported (grey) when N < 10.

These, as well as other algorithms trained on the same dataset,
highlighted SLFN11, hnRNPA1 [54], hnRNPCP1, DAAM1 [55], as well
as two pseudogenes: AC008427.2, also called MFFP2, and RP11-
177C12.1. In the case of Lapatinib, the most contributing datasets
were transcriptomics and proteomics, analyzed with SVC (or SVM)
and extra-trees, respectively. GPX3, DYRK3, ADORA1, and STYL1
were among the low-ranking transcriptomics features, while anal-
ysis of the proteomic features pointed to Claudin7, E-Cadherin,
and Rab25. Notably, most algorithms recovered either EGFR/HER1
or HER2 among their most important features.

Erlotinib appeared as the exception, in having the proteomics
as the top-contributing dataset, paired with the Elastic Net algo-
rithm. The most important features in this case appear to be P-
Cadherin, EGFR, as well as Shc_pY317 and RSK1-2-3.

For mirdametinib (PD-0325901), the main contribution came
from the transcriptomics dataset, through the Elastic Net algo-
rithm. The features with the lowest average rank were ETV4 and
ETV5, as well as SPRY2 and TOR4A. We also noted the presence
of CMTM7 among the features consistently ranked low by several
algorithms.

In the case of selumetinib (AZD6244), the main contribution
was the logistic algorithm, trained on the transcriptomics dataset.
The most important feature in this dataset-algorithm pair, as
well as in others, appears to be CMTM7, as well as ETV4, S100A4,
SPRY2/4, and TRPV2.

Furthermore, among the top predictors for the other 16
classifiers with inferior performance, we noticed that a number of
genes in the transcriptomics datasets were consistently picked up
by various algorithms and seemed to be correlated with response,
for a variety of compounds. These genes are MAGEA6, NQO1,
and LEPREL2, already mentioned, as well as FAM21B and PTEN

for sorafenib, HERC5 and CHRNB1 for RAF265, and SIAH3 for
AEW541. PLX4720 (a BRAF inhibitor related to vemurafenib) was
the only compound for which the genomic information was the
most informative. Unsurprisingly, the BRAFV600E mutation was
consistently the feature with the lowest rank for this compound.
In the case of PHA665752 and AZD5030, the main contribution to
the final classifier were from the miRNA dataset and evidenced
the low rank of several microRNAs: miR130a, let-7c, miR1307,
miR425, miR222, miR223, and miR34a, among others. The
classifiers for Nutlin-3 relied mostly on the proteomics dataset
and the Elastic Net or logistic algorithms, and pointed to Bax,
VAV1, Annexin1 and p21 as top features. In addition, predictions
for nilotinib and PF2341066, of intermediate performance, relied
mostly on the cell type, and valued the hematopoietic origin
of the tumor cells as the most important factor to predict
chemosensitivity.

Finally, we noticed that long non-coding RNAs frequently
appeared among the top 50 features retrieved by most algorithms
in the transcriptomics database. While these regulatory nucleic
acids have received increasing attention recently for their role in
tumorigenesis and cancer progression [56], they are still largely
understudied. Their presence in our results indicates that they
are likely to play a role in the mechanisms underlying sensitivity
and resistance in many cases.

We compiled the main predictors of sensitivity discovered by
our method in Table 1.

Comparisons with single data types
We applied our modeling pipeline to the individual parts of the
CCLE dataset, to compare the performance of stacked classifiers
drawing from the complete dataset with the performance of the
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Figure 5. Violin plot showing the distribution of drug-specific predictive
models trained on the different subsets of the CCLE dataset. Path: path-
way activities; Meta: metabolomic; Expl: explainable models.

same procedure but considering a single dataset at the time
(Table S3). In general, we observe a small improvement of the
performance when considering multiple datasets, however it is
not the case for all drugs. The transcriptomics data alone is often
enough to obtain accuracies that are comparable, or even slightly
superior to the full multi-omic dataset (Fig. 5). For paclitaxel and
irinotecan, for example, the models trained only on the transcrip-
tomic data were slightly more performant than the ones trained
on the full dataset. For TAE684 and ZD-6474, it was the RPPA
dataset that performed slightly better, and in the cases of AEW541
and PF2341066, cancer type only could resume and even surpass
the performance of the full model.

Explainable models can capture most of the
predictivity of ensembles
In order to build interpretable, useable predictive models, we
attempted to use only the dataset with the highest predictivity
alone (transcriptomics) and reduced the number of features to
three. Figure 6a shows the ROC curves for five best of these
slim models, for which AUROC >0.75. Figures 6b show the 2D
partial dependency plots for two example drugs, for the respective
models. Supplementary Fig. S2 shows the ROC curves for each
drug’s best model. It can be noted that the five drugs with the best
results [irinotecan, paclitaxel, panobinostat, AZD6244 (selume-
tinib), PD-0325901 (mirdametinib)] were already individualized
during the previous analysis. The partial dependency plots for
irinotecan (Fig. 5b, middle) shows that, as the level of expression
of each of the three predictor genes (HNRNPA1, RP11-177C12.1
and SLFN11) increases, so does the predicted sensitivity of the
cell lines. A similar reasoning can be made for paclitaxel (Fig. 5,
right).

Furthermore, we assessed the generalizability of this approach
by testing the models on the GDSC database [38]. Using gene
expression data from 967 cell lines and AUC values for four
drugs overlapping with the CCLE models (irinotecan, paclitaxel,
AZD6244, and PD-0325901), we applied the same predictors. Our
results suggest a strong applicability of our modeling strategy
across databases, supporting the feasibility of constructing
explainable models based on the expression of a small set of
genes, regardless of the dataset (Supplementary Table S4). Further
work is needed to develop these models across more databases
and develop models that can be applied in a clinical setting.

We also tested the influence of the data splitting strategy, by
comparing our original labeling with two alternatives: one where

only the first and last quartiles are labeled and the remaining
two are kept out, and one where nearly all the samples are
labeled, leaving only 5% of the samples in the unlabeled category.
We tested our seven best models in a 5-times-5-times nested
cross-validation scheme with these three strategies. Our results
(Supplementary Fig. S2) indicate that the original strategy is
adequate, as both alternatives lead to inferior results in terms of
AUROC.

Finally, we tested the hypothesis that a simpler second-level
algorithm would be either superior or equivalent to the ran-
dom forest integrator we used [57]. To do so, we retested our
seven best models in a 5-times-5-times nested cross-validation
scheme, this time comparing random forest with logistic regres-
sion (Supplementary Fig. S3). Our results indicate a near-perfect
correspondence of the ROC curves, suggesting that while our
random forest approach is adequate, simpler models are able to
achieve the same performance in integrating the predictions of
first-level omics.

Discussion
Here we describe an analysis pipeline, comprising an ensemble
learner (random forests) trained on the predictions of a set of
machine-learning algorithms, themselves trained separately on
the various omic datasets of the CCLE database. We separated the
cell lines, for each of the 23 compounds, into three equal-sized cat-
egories: sensitive, intermediate, and resistant, and applied nested
cross-validation to classify sensitive versus resistant cell lines. Our
results indicate that for seven compounds (three cytotoxic: pacli-
taxel, irinotecan, and panobinostat; four targeted: mirdametinib,
selumetinib, erlotinib, and lapatinib) we can predict the position
of cell lines within these two categories, across cancer types,
with remarkable performance. Nevertheless, the performance of
our classifiers varied with cell type: better results were obtained
for cancer types for which many cell lines are present in the
CCLE database (e.g. lung carcinoma and colorectal carcinoma)
while performance was less convincing for a number of other
cancer types showing fewer representative cell lines in the CCLE
database.

Contrary to our expectations, ensembling and late-stage inte-
gration of predictions only moderately improved the performance
compared to the single-omic models. In most cases, compared to
the full model trained on the complete multi-omic dataset, mod-
els trained on a single data type obtained similar performance.
This seems to show that the predictive signals are redundant
across omic types, and do not necessarily synergize or comple-
ment each other. The transcriptomics datasets were the data
type that contained the most information, which can now be re-
interpreted in a more clinical application context.

For example, genes identified by our improved analysis belong
to different families and pathways, and while the function of
several have already been published previously, most of them had
never been targeted in a clinical context. For example, SLFN11,
a gene coding for a helicase involved in DNA repair, is a known
predictor of sensitivity to a wide range of DNA-damaging agents,
and has been associated with sensitivity to PARP inhibition [58,
59]. Hence, our study suggests to incorporate this gene into patient
diagnosis.

In contrast, LEPREL2, plays an important role in collagen chain
assembly, and its expression seems to be predictive to resis-
tance to the inhibitor of spindle formation paclitaxel. LEPREL2
has previously been identified, together with TGFBI, as part of
a hub of genes controlling the response to 5-fluorouracil-based

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae567#supplementary-data
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Figure 6. (a) ROC curves for the five drug-specific explainable models with AUROC >0.75; (b) Decision thresholds for three example drugs.

chemotherapy in colorectal cancer, although the level of expres-
sion of this gene was not itself significantly different between
resistant and sensitive cell lines [60]. A more detailed analysis in a
cancer-specific context taking a whole hub of genes into account
might help for patients’ stratification here.

For example, MEK inhibitors, selumetinib and mirdametinib,
present partially similar profiles of predictors: for these two
compounds, expression of ETV4, a transcription factor involved
in the regulation of transcription by RNA polymerase II, as well as
SPRY1/2/4, seem to be associated with sensitivity. ETV4 has been
associated with a number of cancers [61, 62]. Notably, ETV4 was
recently correlated with poor survival, as well as with immune cell
infiltration, tumor heterogeneity and stemness in a pan-cancer
cohort in TCGA [63]. The SPRY family of genes encodes a number
of proteins involved in the negative regulation of growth signaling
[64]. More importantly, the long non-coding RNA SPRY1-IT1 has
been associated, both positively and negatively, with proliferation
and metastasis in breast, liver, and gastric cancers [65–67]. The
role of this long non-coding RNA in relation to cancer has recently
been partially elucidated, revealing functional interactions with
several cancer-associated pathways, notably HIF-1alpha, NFκB,
and the MAPK/PI3K axis [68]. SPRY2 has been associated with
cancer progression in particular in breast cancers and melanomas
[69].

In the case of the topoisomerase-inhibitor irinotecan, two
genes seem to be highly predictive: HNRNPA1, an abundant
and ubiquitously expressed member of the hnRNP family of
heterogeneous-nuclear-ribonucleoproteins, and CMTM7, or CKLF-
like MARVEL transmembrane domain-containing protein 7, a
gene involved in various cellular processes, including immune
regulation and cancer development. HNRNPA1 is known to
interact with, and regulate the expression and translation of,
key factors of tumorigenesis, in particular apoptosis, cell cycle,
and telomere length maintenance [54]. Strikingly, while this
gene is overexpressed in a number of cancers, it has not, to our
knowledge, been associated with sensitivity to any compounds.

CMTM7 has been determined to be downregulated in various
cancers, and its overexpression inhibits cell proliferation and
tumor formation. For these reasons, it could potentially function
as a biomarker [70]. Interestingly, TNFRSF12A, a member of
the Tumor Necrosis Factor receptor superfamily, was found
associated, in our analyses, with sensitivity to the HDAC-inhibitor
panobinostat.

Furthermore, we designed predictive models based on subsets
of predictive transcriptomic features. In a number of cases, our
results indicate that the sensitivity of cell lines to antineoplastic
agents, either cytotoxic or targeted, can be predicted with a high
degree of accuracy and specificity. We propose that these models,
which only require the measurement of the level of expression
of a small number of genes, could be useful in the assessment
and stratification of patients, and could be instrumental in the
progress toward individualized cancer treatment. For example,
our model for irinotecan, which only relies on a linear model
of three RNA species (HNRNPA1, RP11-177C12.1 and SLFN11), is
able to pick the most sensitive cell lines across cancer types,
potentially rendering this drug useful in patients presenting with
cancers for which this drug is not part of the standard treatment.
Similarly, our models for selumetinib and mirdametinib are able
to segregate sensitive from resistant cell lines, including in cancer
types which usually do not present any of the known alterations
of the MAPK pathway and for which MEK inhibitors are usually
not recommended. Our models for paclitaxel and panobinostat
obtain similarly interesting performances.

Conclusively, our results indicate that large-scale analyses of
cancer cell line repositories are useful to retrieve relationships
between resistance to anti-cancer drugs and gene expression
profiles. Our pipeline exploits the major signals of the dataset by
focusing on the most extreme functional differences. By consider-
ing the ActArea, which considers the entirety of the drug-response
curve, as a target instead of the IC50, we were able to focus on
integrated functional response. Our pipeline uses multiple cross-
validation steps, which helps in balancing the biases potentially
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introduced by the relatively small number of samples in biological
databases compared with the large number of features. Many of
the predictors recovered by our stacked modeling fall in line with
previously published results [71, 72]. In addition, we individualized
a number of species, some of which understudied like long non-
coding RNAs, which seem to play a role in cancer development,
and recommend that further research focuses on these targets to
shed light on their involvement in the various processes of car-
cinogenesis. Hence, our findings strongly recommend to extend
patient stratification beyond genomic profiling to transcriptomic
analysis of at least a subset of cancer specific (or drug specific?)
candidate genes, paving the avenue to individualized cancer ther-
apy/treatment.

This study has a number of important limitations. When eval-
uating the predictive performance of our models, it is important
to remember that a third of the cell lines (not necessarily the
same across compounds) have been excluded from the dataset,
as they displayed an intermediate level of drug responsiveness
which could decrease the ability of our models to form accurate
predictions on the more extreme phenotypes. Therefore, a strong
correlation between our predictions and the measured sensitivity
of cell lines to the tested compounds exists, this ‘intermediate’
class of cell lines is likely to display a mix of molecular charac-
teristics from both sensitive and resistant cells, or could display
its own molecular characteristics, which we did not explicitly
study. Future works should focus on addressing this issue. In addi-
tion, the genetic make-up of the cell lines of the CCLE database
does not necessarily represent accurately the variability in a
large human population. Ideally, this should be accounted for
when designing future clinical studies pertaining to the evalua-
tion of genetic markers. It has also been noted previously that the
ActArea, although arguably a better indicator of drug sensitivity
than the IC50, is harder to learn for predictive models [73].

The main takeaway of our study is that, contrary to expecta-
tions, the transcriptomic dataset is nearly always a better feature
set to build predictors of sensitivity than other omics, notably
genomics. This can be explained by several factors, notably the
continuous nature of RNA sequencing data (in contrast to Boolean
genomic information), the more direct link with proteins which
are the primary effectors and mediators of the effects of various
drugs, and the fact that RNA analysis better reflect the variabil-
ity in gene expression among cells carrying the same genetic
mutation. In addition, transcriptomic data is able to capture the
effects of post-transcriptional modifications, possibly impacting
drug response. This is in line with the results of recent clinical
trials, showing moderate but tangible improvements in the clini-
cal outcome of patients following integration of gene expression
analysis in therapeutic decision-making [74, 75], and provides
additional arguments for biomarker-based treatment strategies
[76, 77].

The second conclusion is that the accuracy of sensitivity pre-
dictions for cell lines varies greatly depending on the drug studied.
This can be explained by the presence or absence of adequate
predictive signals within the dataset, owing to the specific mech-
anism of action of the compound. Still, we observe important
differences in the performance of our models for drugs with
similar clinical profiles, for example DNA-damaging agents, or
MEK inhibitors. This observation emphasizes the specificities of
different drugs belonging to the same class and the necessity of
assessing a large array of compounds.

Lastly, we identified a series of genes which expression bare
a predictive potential of sensitivity in our dataset for multiple
cancer types, and provided examples showing that explainable

models using limited set of maximum three transcriptomic mark-
ers can retain most of the predictive power of large ensembles. We
propose that future research focus on designing and validating
such minimalistic models with the possibility to incorporate them
as decision tools for clinicians.

Key Points

• We developed models predictive of the sensitivity of cell
lines to anti-cancer drugs.

• Late-stage integration of multiple models built from
single omic layers did not improve significantly the accu-
racy of the models compared with single-omic models.

• We identify SLFN11, ETV4, HNRNPA1, and CMTM7 as
promising markers of drug sensitivity in a number of
common cancers.

• Long non-coding RNAs have the potential to be used as
predictors of cancer sensitivity.

• Transcriptomic information is more predictive than
other omic layers in most investigated cases.
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