Ector, C., Schmal, C., DIDIER, J., DE LANDTSHEER, S., Finger, A.-M., Müller-Marquardt, F., Schulte, J. H., SAUTER, T., Keilholz, U., Herzel, H., Kramer, A., & Granada, A. E. (22 August 2024). Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping. Nature Communications, 15 (1), 7205. doi:10.1038/s41467-024-51611-3 Peer Reviewed verified by ORBi |
BADKAS, A., DE LANDTSHEER, S., & SAUTER, T. (2023). Expanding the Disease Network of Glioblastoma Multiforme via Topological Analysis. International Journal of Molecular Sciences, 24 (4). doi:10.3390/ijms24043075 Peer Reviewed verified by ORBi |
DIDIER, J., DE LANDTSHEER, S., PIRES PACHECO, M. I., KISHK, A., SCHNEIDER, J., Demuth, I., & SAUTER, T. (26 October 2022). Improving Machine Learning-based Prediction of Frailty in Elderly People with Digital Wearables : Data from the Berlin Aging Study II (BASE-II) [Poster presentation]. European Digital Medicine Conference Luxembourg 2022, Belval, Luxembourg. |
DIDIER, J., DE LANDTSHEER, S., PIRES PACHECO, M. I., KISHK, A., SCHNEIDER, J., Demuth, I., & SAUTER, T. (09 October 2022). Machine learning-based prediction of frailty in elderly people : Data from the Berlin Aging Study II (BASE-II) [Poster presentation]. 21st International Conference on Systems Biology, Berlin, Germany. |
BADKAS, A., DE LANDTSHEER, S., & SAUTER, T. (2022). Construction and contextualization approaches for protein-protein interaction networks. Computational and Structural Biotechnology Journal, 20, 3280-3290. doi:10.1016/j.csbj.2022.06.040 Peer Reviewed verified by ORBi |
Machado, R. A. C., Stojevski, D., DE LANDTSHEER, S., LUCARELLI, P., Baron, A., SAUTER, T., & SCHAFFNER-RECKINGER, E. (22 February 2021). L-plastin Ser5 phosphorylation is modulated by the PI3K/SGK pathway and promotes breast cancer cell invasiveness. Cell Communication and Signaling, 19 (22), 1-22. doi:10.21203/rs.3.rs-276404/v1 Peer Reviewed verified by ORBi |
BADKAS, A., NGUYEN, T.-P., Caberlotto, L., SCHNEIDER, J., DE LANDTSHEER, S., & SAUTER, T. (2021). Degree Adjusted Large-Scale Network Analysis Reveals Novel Putative Metabolic Disease Genes. Biology, 10 (2). doi:10.3390/biology10020107 Peer Reviewed verified by ORBi |
DE LANDTSHEER, S. (2019). Optimization of logical networks for the modelling of cancer signalling pathways [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/39574 |
CECCHINI, V. F., NGUYEN, T.-P., PFAU, T., DE LANDTSHEER, S., & SAUTER, T. (2019). An Efficient Machine Learning Method to Solve Imbalanced Data in Metabolic Disease Prediction. In V. F. CECCHINI, An Efficient Machine Learning Method to Solve Imbalanced Data in Metabolic Disease Prediction (1st ed, pp. 5). Da Nang, Vietnam: DA NANG PUBLISHING HOUSE. Peer reviewed |
Del Mistro, G., LUCARELLI, P., Muller, I., DE LANDTSHEER, S., Zinoveva, A., Hutt, M., Siegemund, M., Kontermann, R. E., Beissert, S., SAUTER, T., & Kulms, D. (November 2018). Systemic network analysis identifies XIAP and IkappaBalpha as potential drug targets in TRAIL resistant BRAF mutated melanoma. NPJ Systems Biology and Applications, 4, 39. doi:10.1038/s41540-018-0075-y Peer Reviewed verified by ORBi |
LUCARELLI, P., DE LANDTSHEER, S., & SAUTER, T. (2017). Systembasierte Analyse von Wirkstoffresistenzen bei Melanom. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/33864. |
DE LANDTSHEER, S., TRAIRATPHISAN, P., LUCARELLI, P., & SAUTER, T. (2017). FALCON: A Toolbox for the Fast Contextualisation of Logical Networks. Bioinformatics. doi:10.1093/bioinformatics/btx380 Peer reviewed |
DE LANDTSHEER, S. (2015). Near Full-Length Characterization and Population Dynamics of the Human Immunodeficiency Virus Type I Circulating Recombinant Form 42 (CRF42_BF) in Luxembourg. AIDS Research and Human Retroviruses. doi:10.1089/aid.2014.0364 Peer Reviewed verified by ORBi |