[en] The successful use of human induced pluripotent stem cells (iPSCs) for research or clinical applications requires the development of robust, efficient, and reproducible cryopreservation protocols. After cryopreservation, the survival rate of iPSCs is suboptimal and cell line-dependent. We assessed the use of ice recrystallization inhibitors (IRIs) for cryopreservation of human iPSCs. A toxicity screening study was performed to assess specific small-molecule carbohydrate-based IRIs and concentrations for further evaluation. Then, a cryopreservation study compared the cryoprotective efficiency of 15 mM IRIs in 5 % or 10 % DMSO-containing solutions and with CryoStor® CS10. Three iPSC lines were cryopreserved as single-cell suspensions in the cryopreservation solutions and post-thaw characteristics, including pluripotency and differential gene expression were assessed. We demonstrate the fitness-for-purpose of 15 mM IRI in 5 % DMSO as an efficient cryoprotective solution for iPSCs in terms of post-thaw recovery, viability, pluripotency, and transcriptomic changes. This mRNA sequencing dataset has the potential to be used for molecular mechanism analysis relating to cryopreservation. Use of IRIs can reduce DMSO concentrations and its associated toxicities, thereby improving the utility, effectiveness, and efficiency of cryopreservation.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Mommaerts, Kathleen ; Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg. Electronic address: kathleen.mommaerts@ibbl.lu
OKAWA, Satoshi ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Computational Biology > Team Antonio DEL SOL MESA
Schmitt, Margaux; Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
Kofanova, Olga; Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
Ben, Robert N; PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada, Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
DEL SOL MESA, Antonio ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Computational Biology
Mathieson, William; Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
SCHWAMBORN, Jens Christian ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Developmental and Cellular Biology
Acker, Jason P; PanTHERA CryoSolutions Inc., Edmonton, Alberta, Canada, Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
Betsou, Fay; Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
External co-authors :
yes
Language :
English
Title :
Ice recrystallization inhibitors enable efficient cryopreservation of induced pluripotent stem cells: A functional and transcriptomic analysis.
Alasmar, S., Huang, J., Chopra, K., Baumann, E., Aylsworth, A., Hewitt, M., Sandhu, J.K., Tauskela, J.S., Ben, R.N., Jezierski, A., Improved cryopreservation of human induced Pluripotent Stem Cell (iPSC) and iPSC-derived neurons using ice-recrystallization inhibitors. Stem cells (Dayton, Ohio) 41:2023 (2023), 1006–1021.
Ali, M., Khan, S.Y., Vasanth, S., Ahmed, M.R., Chen, R., Na, C.H., Thomson, J.J., Qiu, C., Gottsch, J.D., Riazuddin, S.A., Generation and proteome profiling of PBMC-originated, iPSC-derived corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 59 (2018), 2437–2444.
Arriza, J.L., Kavanaugh, M.P., Fairman, W.A., Wu, Y.N., Murdoch, G.H., North, R.A., Amara, S.G., Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268 (1993), 15329–15332.
Awan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A., Stacey, G.N., Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity?. Regen. Med. 15 (2020), 1463–1491.
Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalek, J., Kizek, R., Mammalian metallothioneins: properties and functions. Metallomics 4 (2012), 739–750.
Baust, J.M., Van, B., Baust, J.G., Cell viability improves following inhibition of cryopreservation-induced apoptosis, In vitro cellular & developmental biology. Animal 36 (2000), 262–270.
Baust, J.M., Vogel, M.J., Van Buskirk, R., Baust, J.G., A molecular basis of cryopreservation failure and its modulation to improve cell survival. Cell Transplant 10 (2001), 561–571.
Baust, J.M., Van Buskirk, R., Baust, J.G., Gene activation of the apoptotic caspase cascade following cryogenic storage. Cell Preservation Technology 1 (2002), 63–80.
Beere, H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R.I., Cohen, G.M., Green, D.R., Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2 (2000), 469–475.
Briard, J.G., Jahan, S., Chandran, P., Allan, D., Pineault, N., Ben, R.N., Small-molecule ice recrystallization inhibitors improve the post-thaw function of hematopoietic stem and progenitor cells. ACS Omega 1 (2016), 1010–1018.
Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., Studer, L., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27 (2009), 275–280.
Chantelle, J.C., Malay, D., Robert, N.B., 2013. Ice recrystallization inhibitors: From biological antifreezes to small molecules, in: W. Peter (Ed.) Recent Developments in the Study of Recrystallization, IntechOpen, Rijeka, pp. Ch. 7.
Chirikian, O., Feinstein, S.D., Faynus, M.A., Kim, A.A., Lane, K.V., Torres, G.V., Pham, J.V., Singh, Z., Nguyen, A., Thomas, D., Clegg, D.O., Wu, J.C., Pruitt, B.L., The effects of xeno-free cryopreservation on the contractile properties of human iPSC derived cardiomyocytes. J. Mol Cell Cardiol. 168 (2022), 107–114.
Crook, J.M., Tomaskovic-Crook, E., Ludwig, T.E., Cryobanking pluripotent stem cells. Methods in Molecular Biology (Clifton N.J.) 1590 (2017), 151–164.
D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., Baetge, E.E., Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23 (2005), 1534–1541.
De Belly, H., Paluch, E.K., Chalut, K.J., Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23 (2022), 465–480.
Deller, R.C., Pessin, J.E., Vatish, M., Mitchell, D.A., Gibson, M.I., Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers. Biomater. Sci. 4 (2016), 1079–1084.
Erol, O.D., Pervin, B., Seker, M.E., Aerts-Kaya, F., Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J. Stem Cells 13 (2021), 1197–1214.
Heng, B.C., Ye, C.P., Liu, H., Toh, W.S., Rufaihah, A.J., Yang, Z., Bay, B.H., Ge, Z., Ouyang, H.W., Lee, E.H., Cao, T., Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J. Biomed. Sci. 13 (2006), 433–445.
Hirokawa, N., Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6 (1994), 74–81.
Hunt, C.J., Cryopreservation of human stem cells for clinical application: a review. Transfus. Med. Hemother 38 (2011), 107–123.
Kaindl, J., Meiser, I., Majer, J., Sommer, A., Krach, F., Katsen-Globa, A., Winkler, J., Zimmermann, H., Neubauer, J.C., Winner, B., Zooming in on cryopreservation of hiPSCs and neural derivatives: a dual-center study using adherent vitrification. Stem Cells Transl. Med. 8 (2019), 247–259.
Katkov, M.S. II, Kim, R., Bajpai, Y.S., Altman, M., Mercola, J.F., Loring, A.V., Terskikh, E.Y., Snyder, F., Levine, Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology 53 (2006), 194–205.
Li, X., Meng, G., Krawetz, R., Liu, S., Rancourt, D.E., The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev. 17 (2008), 1079–1085.
Li, R., Yu, G., Azarin, S.M., Hubel, A., Freezing responses in DMSO-based cryopreservation of human iPS cells: aggregates versus single cells. Tissue Eng. Part C, Methods 24 (2018), 289–299.
Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 2014, 550.
Martin-Ibañez, R., Unger, C., Strömberg, A., Baker, D., Canals, J.M., Hovatta, O., Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum. Reprod. 23 (2008), 2744–2754.
Mathews, M., Wißfeld, J., Flitsch, L.J., Shahraz, A., Semkova, V., Breitkreuz, Y., Neumann, H., Brüstle, O., Reenacting neuroectodermal exposure of hematopoietic progenitors enables scalable production of cryopreservable iPSC-derived human microglia. Stem Cell Rev. Rep. 19 (2023), 455–474.
Miyamoto, Y., Noguchi, H., Yukawa, H., Oishi, K., Matsushita, K., Iwata, H., Hayashi, S., Cryopreservation of induced pluripotent stem cells. Cell Med. 3 (2012), 89–95.
Mommaerts, K., Bellora, C., Lambert, P., Türkmen, S., Schwamborn, J.C., Betsou, F., Method optimization of skin biopsy-derived fibroblast culture for reprogramming into induced pluripotent stem cells. Biopreserv. Biobanking 20 (2022), 12–23.
Monge, M., Colas, E., Doll, A., Gil-Moreno, A., Castellvi, J., Diaz, B., Gonzalez, M., Lopez-Lopez, R., Xercavins, J., Carreras, R., Alameda, F., Canals, F., Gabrielli, F., Reventos, J., Abal, M., Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis 30 (2009), 1288–1297.
Narumiya, S., Ishizaki, T., Uehata, M., Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325 (2000), 273–284.
Neaverson, A., Andersson, M.H.L., Arshad, O.A., Foulser, L., Goodwin-Trotman, M., Hunter, A., Newman, B., Patel, M., Roth, C., Thwaites, T., Kilpinen, H., Hurles, M.E., Day, A., Gerety, S.S., Differentiation of human induced pluripotent stem cells into cortical neural stem cells. Front. Cell Dev. Biol., 10, 2022, 1023340.
Ntai, A., La Spada, A., De Blasio, P., Biunno, I., Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res. 31 (2018), 102–112.
Sa, S., McCloskey, K., Activin A and BMP4 signaling for efficient cardiac differentiation of H7 and H9 human embryonic stem cells. Journal of Stem Cells & Regenerative Medicine 8 (2012), 198–202.
Stossel, T.P., Condeelis, J., Cooley, L., Hartwig, J.H., Noegel, A., Schleicher, M., Shapiro, S.S., Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2 (2001), 138–145.
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102 (2005), 15545–15550.
Sugimoto, M.A., Vago, J.P., Teixeira, M.M., Sousa, L.P., Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J. Immunol. Res., 2016, 2016, 8239258.
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007), 861–872.
Tsankov, A.M., Akopian, V., Pop, R., Chetty, S., Gifford, C.A., Daheron, L., Tsankova, N.M., Meissner, A., A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat. Biotechnol. 33 (2015), 1182–1192.
Uhrig, M., Ezquer, F., Ezquer, M., Improving cell recovery: Freezing and thawing optimization of induced pluripotent stem cells. Cells, 11, 2022.
Vidalino, L., Doria, A., Quarta, S., Zen, M., Gatta, A., Pontisso, P., SERPINB3, apoptosis and autoimmunity. Autoimmun. Rev. 9 (2009), 108–112.
Wagh, V., Meganathan, K., Jagtap, S., Gaspar, J.A., Winkler, J., Spitkovsky, D., Hescheler, J., Sachinidis, A., Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev. Rep. 7 (2011), 506–517.
Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J.B., Nishikawa, S., Nishikawa, S., Muguruma, K., Sasai, Y., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25 (2007), 681–686.
Weng, L.D., Beauchesne, P.R., Dimethyl sulfoxide-free cryopreservation for cell therapy: a review. Cryobiology 94 (2020), 9–17.
William, N., Acker, J.P., Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives. Cryobiology 97 (2020), 123–130.
Wolkers, W.F., Oldenhof, H., 2021. Principles underlying cryopreservation and freeze-drying of cells and tissues, in: W.F. Wolkers, H. Oldenhof (Eds.) Cryopreservation and Freeze-Drying Protocols, Springer US, New York, NY, pp. 3-25.
Wood, B., Padula, M.P., Marks, D.C., Johnson, L., Cryopreservation alters the immune characteristics of platelets. Transfusion 61 (2021), 3432–3442.
Xu, X., Cowley, S., Flaim, C.J., James, W., Seymour, L., Cui, Z., The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog. 26 (2010), 827–837.
Xu, L., Wang, L., Wen, Z., Wu, L., Jiang, Y., Yang, L., Xiao, L., Xie, Y., Ma, M., Zhu, W., Ye, R., Liu, X., Caveolin-1 is a checkpoint regulator in hypoxia-induced astrocyte apoptosis via Ras/Raf/ERK pathway. Am. J. Physiol. Cell Physiol. 310 (2016), C903–C910.
Yoshida, T., Maulik, N., Ho, Y.S., Alam, J., Das, D.K., H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: a study with transgenic mice heterozygous for targeted disruption of the Heme oxygenase-1 gene. Circulation 103 (2001), 1695–1701.