Aghababaeyan Z, Abdellatif M, Briand L, Ramesh S, Bagherzadeh M (2023a) Black-box testing of deep neural networks through test case diversity. IEEE Trans Softw Eng, IEEE
Aghababaeyan Z, Abdellatif M, Dadkhah M, Briand L (2023b) Deepgd: A multi-objective black-box test selection approach for deep neural networks. arXiv:2303.04878
M. Ahmed R. Seraj S.M.S. Islam The k-means algorithm: A comprehensive survey and performance evaluation Electronics, MDPI 2020 9 8 1295
P.J.M. Ali R.H. Faraj E. Koya P.J.M. Ali R.H. Faraj Data normalization and standardization: a technical report Machine Learning Technical Reports 2014 1 1 1 6
H. Ando M. Bell F. Kurauchi K.I. Wong K.F. Cheung Connectivity evaluation of large road network by capacity-weighted eigenvector centrality analysis Transportmetrica A: Transport Science, Taylor & Francis 2021 17 4 648 674 10.1080/23249935.2020.1804480
Arthur D, Vassilvitskii S (2007) K-means++ the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, ACM New York, NY, USA, pp 1027–1035
F.M. Bianchi D. Grattarola L. Livi C. Alippi Graph neural networks with convolutional arma filters IEEE Trans Pattern Anal Mach Intell, IEEE 2021 44 7 3496 3507
P. Bongini M. Bianchini F. Scarselli Molecular generative graph neural networks for drug discovery Neurocomputing, Elsevier 2021 450 242 252 10.1016/j.neucom.2021.04.039
H. Cai V.W. Zheng K.C.C. Chang A comprehensive survey of graph embedding: Problems, techniques, and applications IEEE Trans Knowl Data Eng, IEEE 2018 30 9 1616 1637 10.1109/TKDE.2018.2807452
Chen J, Schein A, Ungar L, Palmer M (2006) An empirical study of the behavior of active learning for word sense disambiguation. In: Proceedings of the Human Language Technology Conference of the NAACL, Main Conference, ACM New York, NY, pp 120–127
Chen J, Wu Z, Wang Z, You H, Zhang L, Yan M (2020) Practical accuracy estimation for efficient deep neural network testing. ACM Transactions on Software Engineering and Methodology (TOSEM), ACM New York, NY, USA 29(4):1–35
Cheng X, Wang H, Hua J, Xu G, Sui Y (2021) Deepwukong: Statically detecting software vulnerabilities using deep graph neural network. ACM Transactions on Software Engineering and Methodology (TOSEM), ACM New York, NY, USA 30(3):1–33
Cheng X, Zhang G, Wang H, Sui Y (2022) Path-sensitive code embedding via contrastive learning for software vulnerability detection. In: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM New York, NY, USA, pp 519–531
X. Dang Y. Li M. Papadakis J. Klein T.F. Bissyandé Y. Le Traon Graphprior: mutation-based test input prioritization for graph neural networks ACM Trans Softw Eng Methodol, ACM New York, NY, USA 2023 33 1 1 40
X. Dang Y. Li M. Papadakis J. Klein T.F. Bissyandé Y. Le Traon Test input prioritization for machine learning classifiers 2024 IEEE IEEE Transactions on Software Engineering 10.1109/TSE.2024.3350019
Du J, Zhang S, Wu G, Moura JM, Kar S (2017) Topology adaptive graph convolutional networks. arXiv:1710.10370
D.K. Duvenaud D. Maclaurin J. Iparraguirre R. Bombarell T. Hirzel A. Aspuru-Guzik R.P. Adams Convolutional networks on graphs for learning molecular fingerprints 2015 NY Advances in neural information processing systems, ACM New York 28
Dwivedi VP, Joshi CK, Luu AT, Laurent T, Bengio Y, Bresson X (2020) Benchmarking graph neural networks. arXiv:2003.00982
S. Elbaum A.G. Malishevsky G. Rothermel Test case prioritization: A family of empirical studies IEEE Trans Softw Eng, IEEE 2002 28 2 159 182 10.1109/32.988497
W. Fan Y. Ma Q. Li Y. He E. Zhao J. Tang D. Yin Graph neural networks for social recommendation 2019 NY The world wide web conference. ACM New York 417 426
Feng Y, Shi Q, Gao X, Wan J, Fang C, Chen Z (2020) Deepgini: prioritizing massive tests to enhance the robustness of deep neural networks. In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM New York, NY, pp 177–188
Fu X, Zhang J, Meng Z, King I (2020) Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference 2020, ACM New York, NY, pp 2331–2341
Gao X, Feng Y, Yin Y, Liu Z, Chen Z, Xu B (2022) Adaptive test selection for deep neural networks. In: Proceedings of the 44th International Conference on Software Engineering, IEEE, pp 73–85
Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: International conference on machine learning, PMLR, pp 1263–1272
Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Advances in neural information processing systems, Curran Associates, p 30
Haq FU, Shin D, Nejati S, Briand L (2021) Can offline testing of deep neural networks replace their online testing? a case study of automated driving systems. Empirical Software Engineering, Springer, 26(5):90
He X, Deng K, Wang X, Li Y, Zhang Y, Wang M (2020) Lightgcn: Simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, ACM New York, NY, pp 639–648
D. Hong L. Gao J. Yao B. Zhang A. Plaza J. Chanussot Graph convolutional networks for hyperspectral image classification IEEE Trans Geosci Remote Sens, IEEE 2020 59 7 5966 5978 10.1109/TGRS.2020.3015157
P. Hu W. Fan S. Mei Identifying node importance in complex networks Physica A: Statistical Mechanics and its Applications, Elsevier 2015 429 169 176 10.1016/j.physa.2015.02.002
Hu Q, Guo Y, Cordy M, Xie X, Ma W, Papadakis M, Le Traon Y (2021) Towards exploring the limitations of active learning: An empirical study. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, pp 917–929
G. Jahangirova P. Tonella An empirical evaluation of mutation operators for deep learning systems 2020 IEEE 13th International Conference on Software Testing 2020 IEEE Validation and Verification (ICST) 74 84
K. Jha S. Saha H. Singh Prediction of protein-protein interaction using graph neural networks Scientific Reports, Nature Publishing Group UK London 2022 12 1 8360
Jin W, Ma Y, Liu X, Tang X, Wang S, Tang J (2020) Graph structure learning for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, ACM New York, NY, pp 66–74
M. Kaushik B. Mathur Comparative study of k-means and hierarchical clustering techniques International Journal of Software & Hardware Research in Engineering, iJournals 2014 2 6 93 98
B. Kim R. Khanna O.O. Koyejo Examples are not enough, learn to criticize! criticism for interpretability 2016 NY Advances in neural information processing systems, ACM New York 29
Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, pp 1039–1049
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907
Li C, Ma J, Guo X, Mei Q (2017) Deepcas: An end-to-end predictor of information cascades. In: Proceedings of the 26th international conference on World Wide Web, ACM New York, NY, pp 577–586
Li Y, Dang X, Tian H, Sun T, Wang Z, Ma L, Klein J, Bissyande TF (2022) Ai-driven mobile apps: an explorative study. arXiv:2212.01635
Y. Li X. Dang L. Ma J. Klein Y.L. Traon T.F. Bissyandé Test input prioritization for 3d point clouds 2023 ACM New York, NY ACM Transactions on Software Engineering and Methodology
Li Z, Ma X, Xu C, Cao C, Xu J, Lü J (2019) Boosting operational dnn testing efficiency through conditioning. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ACM New York, NY, pp 499–509
Liu M, Gao H, Ji S (2020) Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, ACM New York, NY, pp 338–348
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Bindingdb: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic acids research, Oxford University Press 35(suppl_1):D198–D201
Y. Long M. Wu Y. Liu Y. Fang C.K. Kwoh J. Chen J. Luo X. Li Pre-training graph neural networks for link prediction in biomedical networks Bioinformatics, Oxford University Press 2022 38 8 2254 2262
Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y, et al. (2018) Deepgauge: Multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd ACM/IEEE Int Autom Softw Eng Conf, ACM New York, NY, pp 120–131
Ma W, Papadakis M, Tsakmalis A, Cordy M, Traon YL (2021) Test selection for deep learning systems. ACM Transactions on Software Engineering and Methodology (TOSEM), ACM New York, NY, USA, 30(2):1–22
D. Mesquita A. Souza S. Kaski Rethinking pooling in graph neural networks Advances in Neural Information Processing Systems, ACM New York, NY 2020 33 2220 2231
C. Morris M. Ritzert M. Fey W.L. Hamilton J.E. Lenssen G. Rattan M. Grohe Weisfeiler and leman go neural: Higher-order graph neural networks Proceedings of the AAAI conference on artificial intelligence, ACM New York, NY 2019 33 4602 4609 10.1609/aaai.v33i01.33014602
M. Neumann R. Garnett C. Bauckhage K. Kersting Propagation kernels: efficient graph kernels from propagated information Machine learning, Springer 2016 102 209 245 3451526 10.1007/s10994-015-5517-9
A. Panichella F.M. Kifetew P. Tonella Automated test case generation as a many-objective optimisation problem with dynamic selection of the targets IEEE Trans Softw Eng, IEEE 2017 44 2 122 158 10.1109/TSE.2017.2663435
Park N, Kan A, Dong XL, Zhao T, Faloutsos C (2019) Estimating node importance in knowledge graphs using graph neural networks. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, ACM New York, NY, pp 596–606
E. Patel D.S. Kushwaha Clustering cloud workloads: K-means vs gaussian mixture model Procedia computer science, Elsevier 2020 171 158 167 10.1016/j.procs.2020.04.017
F. Pedregosa G. Varoquaux A. Gramfort V. Michel B. Thirion O. Grisel M. Blondel P. Prettenhofer R. Weiss V. Dubourg et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research JMLR org 2011 12 2825 2830
Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: Automated whitebox testing of deep learning systems. In: proceedings of the 26th Symposium on Operating Systems Principles, ACM New York, NY, pp 1–18
Qiong Q, Dongxia W (2016) Evaluation method for node importance in complex networks based on eccentricity of node. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), IEEE, pp 2499–2502
Ranganathan H, Venkateswara H, Chakraborty S, Panchanathan S (2017) Deep active learning for image classification. In: 2017 IEEE International Conference on Image Processing (ICIP), IEEE, pp 3934–3938
Réau M, Renaud N, Xue LC, Bonvin AM (2023) Deeprank-gnn: a graph neural network framework to learn patterns in protein–protein interfaces. Bioinformatics, Oxford University Press, 39(1):btac759
Ren P, Xiao Y, Chang X, Huang PY, Li Z, Gupta BB, Chen X, Wang X (2021) A survey of deep active learning. ACM computing surveys (CSUR), ACM New York, NY, 54(9):1–40
Riesen K, Bunke H (2008) Iam graph database repository for graph based pattern recognition and machine learning. In: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, SSPR & SPR 2008, Orlando, USA, December 4-6, 2008. Proceedings, Springer, pp 287–297
Sassano M (2002) An empirical study of active learning with support vector machines forjapanese word segmentation. In: Proceedings of the 40th annual meeting of the association for computational linguistics, Association for Computational Linguistics, pp 505–512
Sculley D (2010) Web-scale k-means clustering. In: Proceedings of the 19th international conference on World wide web, ACM New York, NY, pp 1177–1178
Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. AI magazine, AAAI 29(3):93–93
Shen W, Li Y, Chen L, Han Y, Zhou Y, Xu B (2020) Multiple-boundary clustering and prioritization to promote neural network retraining. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 410–422
Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, JMLR, 12(9)
Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J (2020) Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv:2001.09382
Sun C, Shrivastava A, Vondrick C, Sukthankar R, Murphy K, Schmid C (2019) Relational action forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, pp 273–283
Thekumparampil KK, Wang C, Oh S, Li LJ (2018) Attention-based graph neural network for semi-supervised learning. arXiv:1803.03735
Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv:1710.10903
Wang D, Shang Y (2014) A new active labeling method for deep learning. In: 2014 International joint conference on neural networks (IJCNN), IEEE, pp 112–119
Wang Z, You H, Chen J, Zhang Y, Dong X, Zhang W (2021) Prioritizing test inputs for deep neural networks via mutation analysis. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE, pp 397–409
Weiss M, Tonella P (2022) Simple techniques work surprisingly well for neural network test prioritization and active learning (replicability study). In: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM New York, NY, pp 139–150
O. Wieder S. Kohlbacher M. Kuenemann A. Garon P. Ducrot T. Seidel T. Langer A compact review of molecular property prediction with graph neural networks Drug Discovery Today: Technologies, Elsevier 2020 37 1 12 10.1016/j.ddtec.2020.11.009
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z (2018) Drugbank 5.0: a major update to the drugbank database for, et al (2018) Nucleic acids research. Oxford University Press 46(D1):D1074–D1082
Wu L, Sun P, Hong R, Fu Y, Wang X, Wang M (2018) Socialgcn: An efficient graph convolutional network based model for social recommendation. arXiv:1811.02815
Wu S, Sun F, Zhang W, Xie X, Cui B (2022) Graph neural networks in recommender systems: a survey. ACM Computing Surveys, ACM New York, NY 55(5):1–37
Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive survey on graph neural networks. Trans Neural Netw Learn Syst, IEEE 32(1):4–24
S. Xiao S. Wang Y. Dai W. Guo Graph neural networks in node classification: survey and evaluation Machine Vision and Applications, Springer 2022 33 1 19
Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? arXiv:1810.00826
Y. Yang L. Yu X. Wang Z. Zhou Y. Chen T. Kou A novel method to evaluate node importance in complex networks Phys A: Stat Mech Appl, Elsevier 2019 526 121118 10.1016/j.physa.2019.121118
Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-supervised learning with graph embeddings. International conference on machine learning. PMLR, ACM New York, NY, pp 40–48
Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J (2018) Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, ACM New York, NY, pp 974–983
J. Yu H. Yin J. Li M. Gao Z. Huang L. Cui Enhance social recommendation with adversarial graph convolutional networks 2020 IEEE IEEE Trans Knowl Data Eng
Z. Yu N.A. Kraft T. Menzies Finding better active learners for faster literature reviews Empir Softw Eng, Springer 2018 23 3161 3186 10.1007/s10664-017-9587-0
X.M. Zhang L. Liang L. Liu M.J. Tang Graph neural networks and their current applications in bioinformatics Frontiers in genetics, Frontiers Media SA 2021 12 10.3389/fgene.2021.690049
Zhao T, Zhang X, Wang S (2021) Graphsmote: Imbalanced node classification on graphs with graph neural networks. In: Proceedings of the 14th ACM international conference on web search and data mining, ACM New York, NY, pp 833–841
J. Zhou G. Cui S. Hu Z. Zhang C. Yang Z. Liu L. Wang C. Li M. Sun Graph neural networks: A review of methods and applications AI Open, Elsevier 2020 1 57 81 10.1016/j.aiopen.2021.01.001
A. Zolfagharian M. Abdellatif L.C. Briand M. Bagherzadeh S. Ramesh A search-based testing approach for deep reinforcement learning agents 2023 IEEE IEEE Transactions on Software Engineering 10.1109/TSE.2023.3269804