Article (Scientific journals)
Towards Exploring the Limitations of Test Selection Techniques on Graph Neural Networks: An Empirical Study
DANG, Xueqi; LI, Yinghua; Wei Ma et al.
2024In Empirical Software Engineering, 29 (5)
Peer Reviewed verified by ORBi
 

Files


Full Text
2024_EMSE_Empirical.pdf
Publisher postprint (2.46 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
DANG, Xueqi  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
LI, Yinghua  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Wei Ma;  Nanyang Technological University, Singapore, Singapore
Yuejun Guo;  LIST - Luxembourg Institute of Science and Technology [LU]
Qiang Hu;  The University of Tokyo, Tokyo, Japan
PAPADAKIS, Mike ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
yes
Language :
English
Title :
Towards Exploring the Limitations of Test Selection Techniques on Graph Neural Networks: An Empirical Study
Publication date :
22 July 2024
Journal title :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Publisher :
Springer
Volume :
29
Issue :
5
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Security, Reliability and Trust
European Projects :
H2020 - 949014 - NATURAL - Natural Program Repair
FnR Project :
FNR17036341 - Towards Improving The Robustness Of Graph Neural Network Models: An Empirical Study, 2022 (01/08/2022-31/07/2025) - Xueqi Dang
Funders :
Luxembourg National Research Fund AFR PhD
Union Européenne
Funding number :
AFR PhD 17036341
Available on ORBilu :
since 18 October 2024

Statistics


Number of views
132 (7 by Unilu)
Number of downloads
33 (1 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
4
WoS citations
 
2

Bibliography


Similar publications



Contact ORBilu