Profil

LI Yinghua

University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX

ORCID
0000-0003-1390-0393
Main Referenced Co-authors
BISSYANDE, Tegawendé  (9)
KLEIN, Jacques  (9)
DANG, Xueqi  (7)
LE TRAON, Yves  (4)
HABIB, Andrew  (3)
Main Referenced Keywords
Graph Neural Networks (1); Mutation (1); Patch correctness (1); Patch overfitting (1); Program repair (1);
Main Referenced Disciplines
Computer science (11)

Publications (total 11)

The most downloaded
107 downloads
LI, Y. (2024). Test Input Prioritization for Deep Neural Networks [Doctoral thesis, SnT]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/62064 https://hdl.handle.net/10993/62064

The most cited

22 citations (Scopus®)

TIAN, H., LI, Y., PIAN, W., KABORE, A. K., Liu, K., HABIB, A., KLEIN, J., & BISSYANDE, T. F. D. A. (2022). Predicting Patch Correctness Based on the Similarity of Failing Test Cases. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3511096 https://hdl.handle.net/10993/52239

PIAN, W., LI, Y., TIAN, H., SUN, T., SONG, Y., TANG, X., HABIB, A., KLEIN, J., & BISSYANDE, T. (2025). You Don’t Have to Say Where to Edit! jLED – Joint Learning to Localize and Edit Source Code. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3712187
Peer Reviewed verified by ORBi

LI, Y., DANG, X., Tian, H., SUN, T., Wang, Z., Ma, L., KLEIN, J., & BISSYANDE, T. F. D. A. (2024). An Empirical Study of AI Techniques in Mobile Applications. Journal of Systems and Software. doi:10.1016/j.jss.2024.112233
Peer Reviewed verified by ORBi

LI, Y. (2024). Test Input Prioritization for Deep Neural Networks [Doctoral thesis, SnT]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/62064

LI, Y., DANG, X., Ma, L., KLEIN, J., & BISSYANDE, T. F. D. A. (22 July 2024). Prioritizing test cases for deep learning-based video classifiers. Empirical Software Engineering, 29 (5), 111. doi:10.1007/s10664-024-10520-1
Peer Reviewed verified by ORBi

DANG, X., LI, Y., Wei Ma, Yuejun Guo, Qiang Hu, PAPADAKIS, M., CORDY, M., & LE TRAON, Y. (22 July 2024). Towards Exploring the Limitations of Test Selection Techniques on Graph Neural Networks: An Empirical Study. Empirical Software Engineering, 29 (5). doi:10.1007/s10664-024-10515-y
Peer Reviewed verified by ORBi

LI, Y., DANG, X., Ma, L., KLEIN, J., LE TRAON, Y., & BISSYANDE, T. F. D. A. (04 June 2024). Test Input Prioritization for 3D Point Clouds. ACM Transactions on Software Engineering and Methodology, 33 (5), 1-44. doi:10.1145/3643676
Peer Reviewed verified by ORBi

LI, Y., DANG, X., PIAN, W., Habib, A., KLEIN, J., & BISSYANDE, T. F. D. A. (05 April 2024). Test Input Prioritization for Graph Neural Networks. IEEE Transactions on Software Engineering, 50 (6), 1396 - 1424. doi:10.1109/TSE.2024.3385538
Peer Reviewed verified by ORBi

DANG, X.* , LI, Y.* , PAPADAKIS, M., KLEIN, J., BISSYANDE, T. F. D. A., & LE TRAON, Y. (05 January 2024). Test Input Prioritization for Machine Learning Classifiers. IEEE Transactions on Software Engineering, 50 (3), 413 - 442. doi:10.1109/TSE.2024.3350019
Peer Reviewed verified by ORBi
* These authors have contributed equally to this work.

DANG, X., LI, Y., PAPADAKIS, M., KLEIN, J., BISSYANDE, T. F. D. A., & LE TRAON, Y. (2023). GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3607191
Peer Reviewed verified by ORBi

TIAN, H., LI, Y., PIAN, W., KABORE, A. K., Liu, K., HABIB, A., KLEIN, J., & BISSYANDE, T. F. D. A. (2022). Predicting Patch Correctness Based on the Similarity of Failing Test Cases. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3511096
Peer Reviewed verified by ORBi

TIAN, H., Liu, K., LI, Y., KABORE, A. K., KOYUNCU, A., HABIB, A., Li, L., Wen, J., KLEIN, J., & BISSYANDE, T. F. D. A. (2022). The Best of Both Worlds: Combining Learned Embeddings with Engineered Features for Accurate Prediction of Correct Patches. ACM Transactions on Software Engineering and Methodology.
Peer Reviewed verified by ORBi

Contact ORBilu