Profil

CORDY Maxime

University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal

ORCID
0000-0001-8312-1358
Main Referenced Co-authors
PAPADAKIS, Mike  (47)
LE TRAON, Yves  (40)
GHAMIZI, Salah  (16)
HU, Qiang  (14)
GUO, Yuejun  (11)
Main Referenced Keywords
Software (9); Mutation testing (4); Software Product Line (4); Deep Learning (3); deep learning (3);
Main Referenced Unit & Research Centers
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Security Design and Validation Research Group (SerVal) (11)
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SerVal - Security, Reasoning & Validation (3)
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Other (2)
Interdisciplinary Centre for Security, Reliability and Trust (SnT) (1)
ULHPC - University of Luxembourg: High Performance Computing (1)
Main Referenced Disciplines
Computer science (76)
Aerospace & aeronautics engineering (1)
Electrical & electronics engineering (1)
Radiology, nuclear medicine & imaging (1)
Mathematics (1)

Publications (total 78)

The most downloaded
916 downloads
HABEN, G., HABCHI, S., PAPADAKIS, M., CORDY, M., & LE TRAON, Y. (2021). A Replication Study on the Usability of Code Vocabulary in Predicting Flaky Tests. In 18th International Conference on Mining Software Repositories. doi:10.1109/MSR52588.2021.00034 https://hdl.handle.net/10993/46924

The most cited

56 citations (Scopus®)

MA, W., PAPADAKIS, M., Tsakmalis, A., CORDY, M., & LE TRAON, Y. (2021). Test Selection for Deep Learning Systems. ACM Transactions on Software Engineering and Methodology, 30 (2), 13:1--13:22. doi:10.1145/3417330 https://hdl.handle.net/10993/44550

HU, Q., Yuejun Guo, Xiaofei Xie, CORDY, M., Lei Ma, PAPADAKIS, M., & LE TRAON, Y. (In press). Test Optimization in DNN Testing: A Survey. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/59273.

DONG, Z., HU, Q., Zhang, Z., GUO, Y., CORDY, M., PAPADAKIS, M., Traon, Y. L., & Zhao, J. (October 2024). On the effectiveness of hybrid pooling in mixup-based graph learning for language processing. Journal of Systems and Software, 216, 112139. doi:10.1016/j.jss.2024.112139
Peer Reviewed verified by ORBi

ZEYEN, O., CORDY, M., Perrouin, G., & Acher, M. (2024). Preprocessing is What You Need: Understanding and Predicting the Complexity of SAT-based Uniform Random Sampling. In Proceedings - 2024 IEEE/ACM 12th International Conference on Formal Methods in Software Engineering, FormaliSE 2024. Association for Computing Machinery, Inc. doi:10.1145/3644033.3644371
Peer reviewed

CORDY, M., LAZREG, S., Legay, A., & Schobbens, P. Y. (2023). Towards Strengthening Formal Specifications with Mutation Model Checking. In S. Chandra (Ed.), ESEC/FSE 2023 - Proceedings of the 31st ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering. Association for Computing Machinery, Inc. doi:10.1145/3611643.3613080
Peer reviewed

HU, Q., GUO, Y., Xie, X., CORDY, M., PAPADAKIS, M., & Le Traon, Y. (24 November 2023). LaF: Labeling-free Model Selection for Automated Deep Neural Network Reusing. ACM Transactions on Software Engineering and Methodology, 33 (1), 1-28. doi:10.1145/3611666
Peer Reviewed verified by ORBi

GUO, Y., HU, Q., Xie, X., CORDY, M., PAPADAKIS, M., & Le Traon, Y. (2023). KAPE: <i>k</i> NN-Based Performance Testing for Deep Code Search. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3624735
Peer Reviewed verified by ORBi

Dimovski, A. S., LAZREG, S., CORDY, M., & Legay, A. (2023). Family-based model checking of fMultiLTL properties. In P. Arcaini (Ed.), 27th ACM International Systems and Software Product Line Conference, SPLC 2023 - Proceedings. Association for Computing Machinery. doi:10.1145/3579027.3608976
Peer reviewed

HU, Q., Guo, Y., Xie, X., CORDY, M., Ma, W., PAPADAKIS, M., & LE TRAON, Y. (2023). Evaluating the Robustness of Test Selection Methods for Deep Neural Networks. preprint.

Cuartas, J., Aranda, J., CORDY, M., Ortiz, J., Perrouin, G., & Schobbens, P.-Y. (2023). MUPPAAL: Reducing and Removing Equivalent and Duplicate Mutants in UPPAAL. In Proceedings - 2023 IEEE 16th International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2023. Institute of Electrical and Electronics Engineers Inc. doi:10.1109/ICSTW58534.2023.00021
Peer reviewed

GUBRI, M., CORDY, M., & LE TRAON, Y. (2023). Going Further: Flatness at the Rescue of Early Stopping for Adversarial Example Transferability. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/55436.

Acher, M., Perrouin, G., & CORDY, M. (March 2023). BURST: Benchmarking uniform random sampling techniques. Science of Computer Programming, 226, 102914. doi:10.1016/j.scico.2022.102914
Peer Reviewed verified by ORBi

GUO, Y., HU, Q., CORDY, M., Papadakis, M., & Le Traon, Y. (February 2023). DRE: density-based data selection with entropy for adversarial-robust deep learning models. Neural Computing and Applications, 35 (5), 4009 - 4026. doi:10.1007/s00521-022-07812-2
Peer Reviewed verified by ORBi

Dong, Z., HU, Q., GUO, Y., CORDY, M., PAPADAKIS, M., Zhang, Z., LE TRAON, Y., & Zhao, J. (2023). MixCode: Enhancing Code Classification by Mixup-Based Data Augmentation. IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 379–390. doi:10.1109/SANER56733.2023.00043
Peer reviewed

HU, Q., GUO, Y., Xie, X., CORDY, M., PAPADAKIS, M., Ma, L., & Traon, Y. (2023). Aries: Efficient Testing of Deep Neural Networks via Labeling-Free Accuracy Estimation. 45th IEEE/ACM International Conference on Software Engineering (ICSE), 1776–1787. doi:10.1109/ICSE48619.2023.00152
Peer reviewed

GHAMIZI, S., Zhang, J., CORDY, M., PAPADAKIS, M., Sugiyama, M., & LE TRAON, Y. (2023). GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks. Proceedings of the International Conference on Machine Learning (ICML), 202, 11255–11282.
Peer reviewed

GARG, A., DEGIOVANNI, R. G., Molina, F., CORDY, M., Aguirre, N., PAPADAKIS, M., & Traon, Y. (2023). Enabling Efficient Assertion Inference. International Symposium on Software Reliability Engineering (ISSRE), 623–634. doi:10.1109/ISSRE59848.2023.00039
Peer reviewed

Brizzio, M. A., CORDY, M., PAPADAKIS, M., Sánchez, C. S., Aguirre, N., & DEGIOVANNI, R. G. (2023). Automated Repair of Unrealisable LTL Specifications Guided by Model Counting. Genetic and Evolutionary Computation Conference (GECCO), 1499–1507. doi:10.1145/3583131.3590454
Peer reviewed

HU, Q., GUO, Y., CORDY, M., PAPADAKIS, M., & Traon, Y. (2023). MUTEN: Mutant-Based Ensembles for Boosting Gradient-Based Adversarial Attack. 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), 1708–1712. doi:10.1109/ASE56229.2023.00042
Peer reviewed

HU, Q., GUO, Y., Xie, X., CORDY, M., PAPADAKIS, M., Ma, L., & LE TRAON, Y. (2023). CodeS: Towards Code Model Generalization Under Distribution Shift. IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Results, 1–6. doi:10.1109/ICSE-NIER58687.2023.00007
Peer reviewed

Carvalho, L., DEGIOVANNI, R. G., Brizzio, M. A., CORDY, M., Aguirre, N., LE TRAON, Y., & PAPADAKIS, M. (2023). ACoRe: Automated Goal-Conflict Resolution. 26th International Conference on Fundamental Approaches to Software Engineering (FASE), 13991, 3–25. doi:10.1007/978-3-031-30826-0_1
Peer reviewed

HU, Q., GUO, Y., CORDY, M., Xie, X., MA, W., PAPADAKIS, M., & Traon, Y. (2023). Towards Understanding Model Quantization for Reliable Deep Neural Network Deployment. 2nd IEEE/ACM International Conference on AI Engineering - Software Engineering for AI, CAIN 2023, 56–67. doi:10.1109/CAIN58948.2023.00015
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2023). On Evaluating Adversarial Robustness of Chest X-ray Classification. Proceedings of the Workshop on Artificial Intelligence Safety 2023, 3381.
Peer reviewed

DYRMISHI, S., GHAMIZI, S., SIMONETTO, T. J. A., LE TRAON, Y., & CORDY, M. (2023). On the empirical effectiveness of unrealistic adversarial hardening against realistic adversarial attacks. In Conference Proceedings 2023 IEEE Symposium on Security and Privacy (SP) (pp. 1384-1400). IEEE. doi:10.1109/SP46215.2023.00049
Peer reviewed

DYRMISHI, S., GHAMIZI, S., & CORDY, M. (2023). How do humans perceive adversarial text? A reality check on the validity and naturalness of word-based adversarial attacks. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
Peer reviewed

BERNIER, F., JIMENEZ, M., CORDY, M., & LE TRAON, Y. (2022). Faster and Cheaper Energy Demand Forecasting at Scale. In Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems.
Peer reviewed

Basile, D., ter Beek, M. H., LAZREG, S., CORDY, M., & Legay, A. (December 2022). Static detection of equivalent mutants in real-time model-based mutation testing: An Empirical Evaluation. Empirical Software Engineering, 27 (7). doi:10.1007/s10664-022-10149-y
Peer Reviewed verified by ORBi

RANA, L., LAZREG, S., Bohlachov, V., HEIN, A., & CORDY, M. (October 2022). VARIABILITY-DRIVEN DESIGN CONFIGURATOR OF SPACE SYSTEMS TO SUPPORT DECISION-MAKERS [Paper presentation]. 10th INTERNATIONAL SYSTEMS & CONCURRENT ENGINEERING FOR SPACE APPLICATIONS CONFERENCE (SECESA 2022).

Habchi, S., HABEN, G., SOHN, J., Franci, A., PAPADAKIS, M., CORDY, M., & LE TRAON, Y. (2022). What Made This Test Flake? Pinpointing Classes Responsible for Test Flakiness. In What Made This Test Flake? Pinpointing Classes Responsible for Test Flakiness. doi:10.1109/ICSME55016.2022.00039
Peer reviewed

GARG, A., DEGIOVANNI, R. G., JIMENEZ, M., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2022). Learning from what we know: How to perform vulnerability prediction using noisy historical data. Empirical Software Engineering. doi:10.1007/s10664-022-10197-4
Peer Reviewed verified by ORBi

MA, W., Zhao, M., SOREMEKUN, E., HU, Q., Zhang, J. M., PAPADAKIS, M., CORDY, M., Xie, X., & Traon, Y. L. (2022). GraphCode2Vec: generic code embedding via lexical and program dependence analyses. In Proceedings of the 19th International Conference on Mining Software Repositories (pp. 524--536). doi:10.1145/3524842.3528456
Peer reviewed

KHANFIR, A., Koyuncu, A., PAPADAKIS, M., CORDY, M., BISSYANDE, T. F. D. A., KLEIN, J., & LE TRAON, Y. (2022). iBiR: Bug Report driven Fault Injection. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3542946
Peer Reviewed verified by ORBi

HABCHI, S., HABEN, G., PAPADAKIS, M., CORDY, M., & LE TRAON, Y. (2022). A Qualitative Study on the Sources, Impacts, and Mitigation Strategies of Flaky Tests. In A Qualitative Study on the Sources, Impacts, and Mitigation Strategies of Flaky Tests. doi:10.1109/ICST53961.2022.00034
Peer reviewed

GHAMIZI, S., GARCIA SANTA CRUZ, B., Temple, P., CORDY, M., Perrouin, G., PAPADAKIS, M., & LE TRAON, Y. (2022). Towards Generalizable Machine Learning for Chest X-ray Diagnosis with Multi-task learning. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/50815.

LAZREG, S., Bohlachov, V., RANA, L., HEIN, A., & CORDY, M. (2022). Variability-Aware Design of Space Systems: Variability Modelling, Configuration Workflow and Research Directions. Proceedings of VAMOS 22. doi:10.1145/3510466.3510472

HU, Q., GUO, Y., CORDY, M., Xie, X., Ma, L., PAPADAKIS, M., & LE TRAON, Y. (2022). An Empirical Study on Data Distribution-Aware Test Selection for Deep Learning Enhancement. ACM Transactions on Software Engineering and Methodology. doi:10.1145/3511598
Peer Reviewed verified by ORBi

RUIZ RODRIGUEZ, M. L., KUBLER, S., de Giorgio, A., CORDY, M., Robert, J., & LE TRAON, Y. (2022). Multi-agent deep reinforcement learning based Predictive Maintenance on parallel machines. Robotics and Computer-Integrated Manufacturing. doi:10.1016/j.rcim.2022.102406
Peer reviewed

LAZREG, S., CORDY, M., & Legay, A. (2022). Verification of Variability-Intensive Stochastic Systems with Statistical Model Checking. In T. Margaria (Ed.), Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning - 11th International Symposium, ISoLA 2022, Proceedings. Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-3-031-19759-8_27
Peer reviewed

FRANCI, A., CORDY, M., GUBRI, M., PAPADAKIS, M., & Traon, Y. (2022). Influence-driven data poisoning in graph-based semi-supervised classifiers. International Conference on AI Engineering: Software Engineering for AI, 77–87. doi:10.1145/3522664.3528606
Peer reviewed

CORDY, M., RWEMALIKA, R., FRANCI, A., PAPADAKIS, M., & Harman, M. (2022). FlakiMe: Laboratory-Controlled Test Flakiness Impact Assessment. 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, 982–994. doi:10.1145/3510003.3510194
Peer reviewed

GUBRI, M., CORDY, M., PAPADAKIS, M., LE TRAON, Y., & Sen, K. (2022). Efficient and Transferable Adversarial Examples from Bayesian Neural Networks. The 38th Conference on Uncertainty in Artificial Intelligence.
Peer reviewed

GUBRI, M., CORDY, M., PAPADAKIS, M., Traon, Y. L., & Sen, K. (2022). LGV: Boosting Adversarial Example Transferability from Large Geometric Vicinity. In Computer Vision -- ECCV 2022 (pp. 603--618). Springer Nature Switzerland.
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2022). Adversarial Robustness in Multi-Task Learning: Promises and Illusions. In Proceedings of the thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22). doi:10.1609/aaai.v36i1.19950
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2022). On Evaluating Adversarial Robustness of Chest X-ray Classification: Pitfalls and Best Practices. In The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI- 23) - SafeAI Workshop, Washington, D.C., Feb 13-14, 2023.
Peer reviewed

SIMONETTO, T. J. A., DYRMISHI, S., GHAMIZI, S., CORDY, M., & LE TRAON, Y. (2022). A Unified Framework for Adversarial Attack and Defense in Constrained Feature Space. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22 (pp. 1313-1319). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2022/183
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2021). Evasion Attack STeganography: Turning Vulnerability Of Machine Learning ToAdversarial Attacks Into A Real-world Application. Proceedings of International Conference on Computer Vision 2021. doi:10.1109/ICCVW54120.2021.00010
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2021). Requirements And Threat Models of Adversarial Attacks and Robustness of Chest X-ray classification. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/48411.

HABEN, G., HABCHI, S., PAPADAKIS, M., CORDY, M., & LE TRAON, Y. (2021). A Replication Study on the Usability of Code Vocabulary in Predicting Flaky Tests. In 18th International Conference on Mining Software Repositories. doi:10.1109/MSR52588.2021.00034
Peer reviewed

Castro, T., Teixeira, L., Alves, V., Apel, S., CORDY, M., & Gheyi, R. (23 April 2021). A Formal Framework of Software Product Line Analyses. ACM Transactions on Software Engineering and Methodology, 30 (3), 1-37. doi:10.1145/3442389
Peer Reviewed verified by ORBi

MA, W., PAPADAKIS, M., Tsakmalis, A., CORDY, M., & LE TRAON, Y. (2021). Test Selection for Deep Learning Systems. ACM Transactions on Software Engineering and Methodology, 30 (2), 13:1--13:22. doi:10.1145/3417330
Peer Reviewed verified by ORBi

HU, Q., GUO, Y., CORDY, M., Xiaofei, X., MA, W., PAPADAKIS, M., & LE TRAON, Y. (2021). Towards Exploring the Limitations of Active Learning: An Empirical Study. In The 36th IEEE/ACM International Conference on Automated Software Engineering. doi:10.1109/ASE51524.2021.9678672
Peer reviewed

TITCHEU CHEKAM, T., PAPADAKIS, M., CORDY, M., & LE TRAON, Y. (2021). Killing Stubborn Mutants with Symbolic Execution. ACM Transactions on Software Engineering and Methodology, 30 (2), 19:1--19:23. doi:10.1145/3425497
Peer Reviewed verified by ORBi

CORDY, M., LAZREG, S., PAPADAKIS, M., & Legay, A. (2021). Statistical model checking for variability-intensive systems: applications to bug detection and minimization. Formal Aspects of Computing, 33 (6), 1147--1172. doi:10.1007/s00165-021-00563-2
Peer Reviewed verified by ORBi

Acher, M., Perrouin, G., & CORDY, M. (2021). BURST: a benchmarking platform for uniform random sampling techniques. In SPLC '21: 25th ACM International Systems and Software Product Line Conference, Leicester, United Kindom, September 6-11, 2021, Volume B (pp. 36--40). ACM. doi:10.1145/3461002.3473070
Peer reviewed

MOULINE, L., CORDY, M., & LE TRAON, Y. (2020). Load approximation for uncertain topologies in the low-voltage grid. In INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS, 11-13 November 2020 (pp. 1-6). doi:10.1109/SmartGridComm47815.2020.9302940
Peer reviewed

Basile, D., Ter Beek, M., CORDY, M., & Legay, A. (2020). Tackling the equivalent mutant problem in real-time systems: the 12 commandments of model-based mutation testing. In SOFTWARE PRODUCT LINE CONFERENCE. doi:10.1145/3382025.3414966
Peer reviewed

GHAMIZI, S., RWEMALIKA, R., CORDY, M., VEIBER, L., BISSYANDE, T. F. D. A., PAPADAKIS, M., KLEIN, J., & LE TRAON, Y. (2020). Data-driven simulation and optimization for covid-19 exit strategies. In S. GHAMIZI, R. RWEMALIKA, M. CORDY, L. VEIBER, T. F. D. A. BISSYANDE, M. PAPADAKIS, J. KLEIN, ... Y. LE TRAON, Data-driven simulation and optimization for covid-19 exit strategies (pp. 3434-3442). New York, NY, United States: Association for Computing Machinery. doi:10.1145/3394486.3412863
Peer reviewed

CORDY, M., PAPADAKIS, M., & Legay, A. (2020). Statistical Model Checking for Variability-Intensive Systems. In FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING, Dublin 22-25 April 2020.
Peer reviewed

ANTONIADIS, N., CORDY, M., Sifaleras, A., & LE TRAON, Y. (2020). Preventing Overloading Incidents on Smart Grids: A Multiobjective Combinatorial Optimization Approach. In Communications in Computer and Information Science (pp. 269-281). Springer, Cham. doi:10.1007/978-3-030-41913-4_22
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2020). Adversarial Embedding: A robust and elusive Steganography and Watermarking technique [Paper presentation]. IEEE Symposium on Security and Privacy.

GHAMIZI, S., RWEMALIKA, R., CORDY, M., LE TRAON, Y., & PAPADAKIS, M. (2020). Pandemic Simulation and Forecasting of exit strategies:Convergence of Machine Learning and EpidemiologicalModels. University of Luxembourg. https://orbilu.uni.lu/handle/10993/43166

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2020). FeatureNET: Diversity-driven Generation of Deep Learning Models. In International Conference on Software Engineering (ICSE). doi:10.1145/3377812.3382153
Peer reviewed

GHAMIZI, S., CORDY, M., GUBRI, M., PAPADAKIS, M., Boystov, A., LE TRAON, Y., & Goujon, A. (2020). Search-based adversarial testing and improvement of constrained credit scoring systems. In ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE '20), November 8-13, 2020.
Peer reviewed

CORDY, M., & Legay, A. (December 2019). Verification and abstraction of real-time variability-intensive systems. International Journal on Software Tools for Technology Transfer, 21 (6), 635-649. doi:10.1007/s10009-019-00537-z
Peer Reviewed verified by ORBi

CORDY, M., & Lazreg, S. (2019). Automated evaluation of embedded-system design alternatives. In Proceedings of the 23rd International Systems and Software Product Line Conference, SPLC 2019, Volume A, Paris, France, September 9-13, 2019 (pp. 52:1).
Peer reviewed

Patout, P.-A., & CORDY, M. (2019). Towards context-aware automated writing evaluation systems. In Proceedings of the 1st ACM SIGSOFT International Workshop on Education through Advanced Software Engineering and Artificial Intelligence, EASEAI@ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26, 2019 (pp. 17-20).
Peer reviewed

Lazreg, S., CORDY, M., Collet, P., Heymans, P., & Mosser, S. (2019). Multifaceted automated analyses for variability-intensive embedded systems. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019 (pp. 854-865).
Peer reviewed

CORDY, M., Legay, A., Lazreg, S., & Collet, P. (2019). Towards sampling and simulation-based analysis of featured weighted automata. In Proceedings of the 7th International Workshop on Formal Methods in Software Engineering (pp. 61-64). doi:10.1109/FormaliSE.2019.00015
Peer reviewed

Amand, B., CORDY, M., Heymans, P., Acher, M., Temple, P., & Jézéquel, J.-M. (2019). Towards Learning-Aided Configuration in 3D Printing: Feasibility Study and Application to Defect Prediction. In Proceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems, VAMOS 2019, Leuven, Belgium, February 06-08, 2019 (pp. 7:1-7:9). doi:10.1145/3302333.3302338
Peer reviewed

Plazar, Q., Acher, M., Perrouin, G., Devroey, X., & CORDY, M. (2019). Uniform Sampling of SAT Solutions for Configurable Systems: Are We There Yet? In 12th IEEE Conference on Software Testing, Validation and Verification, ICST 2019, Xi'an, China, April 22-27, 2019 (pp. 240-251). doi:10.1109/ICST.2019.00032
Peer reviewed

CORDY, M., Devroey, X., Legay, A., Perrouin, G., Classen, A., Heymans, P., Schobbens, P.-Y., & Raskin, J.-F. (2019). A Decade of Featured Transition Systems. In From Software Engineering to Formal Methods and Tools, and Back - Essays Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday (pp. 285-312). doi:10.1007/978-3-319-51963-0_35
Peer reviewed

Arcelli, F., Walter, B., Ampatzoglou, A., Palomba, F., Perrouin, G., Acher, M., CORDY, M., & Devroey, X. (Eds.). (2019). Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation. ACM.

CORDY, M., Muller, S., PAPADAKIS, M., & LE TRAON, Y. (2019). Search-based Test and Improvement of Machine-Learning-Based Anomaly Detection Systems. In ACM SIGSOFT International Symposium on Software Testing and Analysis. doi:10.1145/3293882.3330580
Peer reviewed

GHAMIZI, S., CORDY, M., PAPADAKIS, M., & LE TRAON, Y. (2019). Automated Search for Configurations of Deep Neural Network Architectures. In Automated Search for Configurations of Convolutional Neural Network Architectures. doi:10.1145/3336294.3336306
Peer reviewed

JIMENEZ, M., TITCHEU CHEKAM, T., CORDY, M., PAPADAKIS, M., KINTIS, M., LE TRAON, Y., & Harman, M. (2018). Are mutants really natural? A study on how “naturalness” helps mutant selection. Proceedings of 12th International Symposium on 
 Empirical Software Engineering and Measurement (ESEM'18). doi:10.1145/3239235.3240500
Peer reviewed

JIMENEZ, M., CORDY, M., LE TRAON, Y., & PAPADAKIS, M. (2018). TUNA: TUning Naturalness-based Analysis. In 34th IEEE International Conference on Software Maintenance and Evolution, Madrid, Spain, 26-28 September 2018.
Peer reviewed

JIMENEZ, M., CORDY, M., LE TRAON, Y., & PAPADAKIS, M. (September 2018). On the impact of tokenizer and parameters on N-gram based Code Analysis [Paper presentation]. 34th IEEE International Conference on Software Maintenance and Evolution (ICSME'18), Madrid, Spain.

Fouquet, F., HARTMANN, T., Mosser, S., & CORDY, M. (2018). Enabling lock-free concurrent workers over temporal graphs composed of multiple time-series. In 33rd Annual ACM Symposium on Applied Computing (SAC'18). doi:10.1145/3167132.3167255
Peer reviewed

JIMENEZ, M., CORDY, M., KINTIS, M., TITCHEU CHEKAM, T., LE TRAON, Y., & PAPADAKIS, M. (2017). On the Naturalness of Mutants. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35014.

Contact ORBilu