[en] Current rejuvenation strategies, which range from calorie restriction to in vivo partial reprogramming, only improve a few specific cellular processes. In addition, the molecular mechanisms underlying these approaches are largely unknown, which hinders the design of more holistic cellular rejuvenation strategies. To address this issue, we developed SINGULAR (Single-cell RNA-seq Investigation of Rejuvenation Agents and Longevity), a cell rejuvenation atlas that provides a unified system biology analysis of diverse rejuvenation strategies across multiple organs at single-cell resolution. In particular, we leverage network biology approaches to characterize and compare the effects of each strategy at the level of intracellular signaling, cell-cell communication, and transcriptional regulation. As a result, we identified master regulators orchestrating the rejuvenation response and propose that targeting a combination of them leads to a more holistic improvement of age-dysregulated cellular processes. Thus, the interactive database accompanying SINGULAR is expected to facilitate the future design of synthetic rejuvenation interventions.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Hodar, Javier Arcos ✱; Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
JUNG, Sascha; CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain > computational biology group
SOUDY, Mohamed ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
BARVAUX, Sybille ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Computational Biology
DEL SOL MESA, Antonio ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Computational Biology
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
The cell rejuvenation atlas: leveraging network biology to identify master regulators of rejuvenation strategies.
2. Pifferi F, Terrien J, Marchal J, Dal-Pan A, Djelti F, Hardy I, Chahory S, Cordonnier N, Desquilbet L, Hurion M, Zahariev A, Chery I, Zizzari P, et al. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun Biol. 2018; 1:30. https://doi.org/10.1038/s42003-018-0024-8 PMID:30271916
3. Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, McKay LK, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN, White JP. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. Nat Aging. 2023; 3:948–64. https://doi.org/10.1038/s43587-023-00451-9 PMID:37500973
4. Macip CC, Hasan R, Hoznek V, Kim J, Lu YR, Metzger LE 4th, Sethna S, Davidsohn N. Gene TherapyMediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice. Cell Reprogram. 2024; 26:24–32. https://doi.org/10.1089/cell.2023.0072 PMID:38381405
5. Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. Nat Prod Bioprospect. 2022; 12:18. https://doi.org/10.1007/s13659-022-00339-y PMID:35534591
6. Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov. 2020; 19:513–32. https://doi.org/10.1038/s41573-020-0067-7 PMID:32467649
7. Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X, Li W, Esteban CR, Long X, et al. Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell. 2020; 180:984–1001.e22. https://doi.org/10.1016/j.cell.2020.02.008 PMID:32109414
8. Ma S, Wang S, Ye Y, Ren J, Chen R, Li W, Li J, Zhao L, Zhao Q, Sun G, Jing Y, Zuo Y, Xiong M, et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell. 2022; 29:990–1005.e10. https://doi.org/10.1016/j.stem.2022.04.017 PMID:35613617
9. Sun S, Ma S, Cai Y, Wang S, Ren J, Yang Y, Ping J, Wang X, Zhang Y, Yan H, Li W, Esteban CR, Yu Y, et al. A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body. Innovation (Camb). 2023; 4:100380. https://doi.org/10.1016/j.xinn.2023.100380 PMID:36747595
10. Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM, Goldstein JM, Gasperini C, Gampierakis IA, et al. Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. Nat Aging. 2023; 3:327–45. https://doi.org/10.1038/s43587-023-00373-6 PMID:37118429
11. Del Sol A, Jung S. The Importance of Computational Modeling in Stem Cell Research. Trends Biotechnol. 2021; 39:126–36. https://doi.org/10.1016/j.tibtech.2020.07.006 PMID:32800604
12. Maity AK, Hu X, Zhu T, Teschendorff AE. Inference of age-associated transcription factor regulatory activity changes in single cells. Nat Aging. 2022; 2:548–61. https://doi.org/10.1038/s43587-022-00233-9 PMID:37118452
13. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019; 20:296. https://doi.org/10.1186/s13059-019-1874-1 PMID:31870423
14. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011; 12:2825–30.
15. Hartmann A, Okawa S, Zaffaroni G, Del Sol A. SeesawPred: A Web Application for Predicting Cellfate Determinants in Cell Differentiation. Sci Rep. 2018; 8:13355. https://doi.org/10.1038/s41598-018-31688-9 PMID:30190516
16. Ravichandran S, Hartmann A, Del Sol A. SigHotSpotter: scRNA-seq-based computational tool to control cell subpopulation phenotypes for cellular rejuvenation strategies. Bioinformatics. 2019; 36:1963–5. https://doi.org/10.1093/bioinformatics/btz827 PMID:31697324
17. Gonçalves CA, Larsen M, Jung S, Stratmann J, Nakamura A, Leuschner M, Hersemann L, Keshara R, Perlman S, Lundvall L, Thuesen LL, Hare KJ, Amit I, et al. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat Commun. 2021; 12:3144. https://doi.org/10.1038/s41467-021-23295-6 PMID:34035279
19. Hishida T, Yamamoto M, Hishida-Nozaki Y, Shao C, Huang L, Wang C, Shojima K, Xue Y, Hang Y, Shokhirev M, Memczak S, Sahu SK, Hatanaka F, et al. In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Rep. 2022; 39:110730. https://doi.org/10.1016/j.celrep.2022.110730 PMID:35476977
20. Pálovics R, Keller A, Schaum N, Tan W, Fehlmann T, Borja M, Kern F, Bonanno L, Calcuttawala K, Webber J, McGeever A, Luo J, Pisco AO, et al, and Tabula Muris Consortium. Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature. 2022; 603:309–14. https://doi.org/10.1038/s41586-022-04461-2 PMID:35236985
21. Dharmaratne M, Kulkarni AS, Taherian Fard A, Mar JC. scShapes: a statistical framework for identifying distribution shapes in single-cell RNA-sequencing data. Gigascience. 2022; 12:giac126. https://doi.org/10.1093/gigascience/giac126 PMID:36691728
22. Choi J, Houston M, Wang R, Ye K, Li W, Zhang X, Huffman DM, Augenlicht LH. Intestinal stem cell aging at single-cell resolution: Transcriptional perturbations alter cell developmental trajectory reversed by gerotherapeutics. Aging Cell. 2023; 22:e13802. https://doi.org/10.1111/acel.13802 PMID:36864750
23. Barvaux S, Okawa S, Del Sol A. SinCMat: A single-cellbased method for predicting functional maturation transcription factors. Stem Cell Reports. 2024; 19:270–84. https://doi.org/10.1016/j.stemcr.2023.12.006 PMID:38215756
24. Karakaslar EO, Katiyar N, Hasham M, Youn A, Sharma S, Chung CH, Marches R, Korstanje R, Banchereau J, Ucar D. Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging. Aging Cell. 2023; 22:e13792. https://doi.org/10.1111/acel.13792 PMID:36840360
25. Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 2001; 20:2438–52. https://doi.org/10.1038/sj.onc.1204385 PMID:11402339
26. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018; 14:576–90. https://doi.org/10.1038/s41574-018-0059-4 PMID:30046148
27. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, Fraifeld VE, de Magalhães JP. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 2018; 46:D1083–90. https://doi.org/10.1093/nar/gkx1042 PMID:29121237
28. Jung S, Arcos Hodar J, Del Sol A. Measuring biological age using a functionally interpretable multi-tissue RNA clock. Aging Cell. 2023; 22:e13799. https://doi.org/10.1111/acel.13799 PMID:36929664
29. Gill D, Parry A, Santos F, Okkenhaug H, Todd CD, Hernando-Herraez I, Stubbs TM, Milagre I, Reik W. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. Elife. 2022; 11:e71624. https://doi.org/10.7554/eLife.71624 PMID:35390271
30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102:15545–50. https://doi.org/10.1073/pnas.0506580102 PMID:16199517
31. Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse Nature. 2020; 583:590–5. https://doi.org/10.1038/s41586-020-2496-1 PMID:32669714
32. Singh PB, Zhakupova A. Age reprogramming: cell rejuvenation by partial reprogramming. Development. 2022; 149:dev200755. https://doi.org/10.1242/dev.200755 PMID:36383700
33. Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol. 2021; 12:771210. https://doi.org/10.3389/fimmu.2021.771210 PMID:34804061
34. Iwahashi H, Takeshita A, Hanazawa S. Prostaglandin E2 stimulates AP-1-mediated CD14 expression in mouse macrophages via cyclic AMPdependent protein kinase A. J Immunol. 2000; 164:5403–8. https://doi.org/10.4049/jimmunol.164.10.5403 PMID:10799905
35. Jia J, Ye T, Cui P, Hua Q, Zeng H, Zhao D. AP-1 transcription factor mediates VEGF-induced endothelial cell migration and proliferation. Microvasc Res. 2016; 105:103–8. https://doi.org/10.1016/j.mvr.2016.02.004 PMID:26860974
36. Okamura M, Shizu R, Abe T, Kodama S, Hosaka T, Sasaki T, Yoshinari K. PXR Functionally Interacts with NF-κB and AP-1 to Downregulate the InflammationInduced Expression of Chemokine CXCL2 in Mice. Cells. 2020; 9:2296. https://doi.org/10.3390/cells9102296 PMID:33076328
37. Thomas MG, Welch C, Stone L, Allan P, Barker RA, White RB. PAX6 expression may be protective against dopaminergic cell loss in Parkinson's disease. CNS Neurol Disord Drug Targets. 2016; 15:73–9. https://doi.org/10.2174/1871527314666150821101757 PMID:26295830
38. Barardo D, Thornton D, Thoppil H, Walsh M, Sharifi S, Ferreira S, Anžič A, Fernandes M, Monteiro P, Grum T, Cordeiro R, De-Souza EA, Budovsky A, et al. The DrugAge database of aging-related drugs. Aging Cell. 2017; 16:594–7. https://doi.org/10.1111/acel.12585 PMID:28299908
39. Ameyar M, Wisniewska M, Weitzman JB. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003; 85:747–52. https://doi.org/10.1016/j.biochi.2003.09.006 PMID:14585541
40. Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov. 2021; 20:669–88. https://doi.org/10.1038/s41573-021-00199-0 PMID:34006959
41. Cheng Y, Pitoniak A, Wang J, Bohmann D. Preserving transcriptional stress responses as an anti-aging strategy. Aging Cell. 2021; 20:e13297. https://doi.org/10.1111/acel.13297 PMID:33474790
42. Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience. 2018; 40:513–21. https://doi.org/10.1007/s11357-018-0047-6 PMID:30470983
43. Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev. 2021; 70:101410. https://doi.org/10.1016/j.arr.2021.101410 PMID:34280555
45. Subramanian A, Alperovich M, Yang Y, Li B. Biologyinspired data-driven quality control for scientific discovery in single-cell transcriptomics. Genome Biol. 2022; 23:267. https://doi.org/10.1186/s13059-022-02820-w PMID:36575523
46. Hafemeister F, Florian A. Single-cell RNA-seq differential expression tests within a sample should use pseudo-bulk data of pseudo-replicates. bioRxiv. 2023. https://doi.org/10.1101/2023.03.28.534443
47. Okawa S, Nicklas S, Zickenrott S, Schwamborn JC, Del Sol A. A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers. Stem Cell Reports. 2016; 7:307–15. https://doi.org/10.1016/j.stemcr.2016.07.014 PMID:27546532
48. Müller-Dott S, Tsirvouli E, Vazquez M, Ramirez Flores RO, Badia-I-Mompel P, Fallegger R, Türei D, Lægreid A, Saez-Rodriguez J. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities. Nucleic Acids Res. 2023; 51:10934–49. https://doi.org/10.1093/nar/gkad841 PMID:37843125
49. Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, Itoh M, Kawaji H, Carninci P, Rost B, Forrest AR. A draft network of ligandreceptor-mediated multicellular signalling in human. Nat Commun. 2015; 6:7866. https://doi.org/10.1038/ncomms8866 PMID:26198319