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ABSTRACT

Current rejuvenation strategies, which range from calorie restriction to in vivo partial reprogramming, only
improve a few specific cellular processes. In addition, the molecular mechanisms underlying these approaches
are largely unknown, which hinders the design of more holistic cellular rejuvenation strategies. To address this
issue, we developed SINGULAR (Single-cell RNA-seq Investigation of Rejuvenation Agents and Longevity), a cell
rejuvenation atlas that provides a unified system biology analysis of diverse rejuvenation strategies across
multiple organs at single-cell resolution. In particular, we leverage network biology approaches to characterize
and compare the effects of each strategy at the level of intracellular signaling, cell-cell communication, and
transcriptional regulation. As a result, we identified master regulators orchestrating the rejuvenation response
and propose that targeting a combination of them leads to a more holistic improvement of age-dysregulated
cellular processes. Thus, the interactive database accompanying SINGULAR is expected to facilitate the future
design of synthetic rejuvenation interventions.

INTRODUCTION

There is a growing interest in rejuvenation interventions
for their potential to mitigate the effects of aging in
humans. These interventions, ranging from lifestyle
changes such as calorie restriction and exercising over
gene therapies like partial reprogramming up to surgical
procedures as heterochronic parabiosis, have been
shown to improve various biological aging markers [1]
and to increase the average lifespan in several model
organisms [2-5]. However, they suffer from two main
limitations. On one hand, although these interventions
proved efficacious in improving specific cellular
processes, none of them achieves a holistic functional

improvement across tissues. In this regard, a review of
pharmacological approaches to slow aging identified
mostly specific and non-overlapping effects on different
hallmarks of aging [6]. On the other hand, clinical
translation of current rejuvenation strategies is often not
feasible (parabiosis), bears significant safety concerns
(partial reprogramming) or requires sustained lifestyle
changes that are known to have low compliance (calorie
restriction, exercise). In order to mitigate these issues,
it is imperative to characterize and compare current
interventions at different levels of biological organization
to enable the discovery of more comprehensive
rejuvenation strategies that correct a wider array of
dysregulated biological processes.
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Elucidating commonalities and differences of the effects
of diverse rejuvenation strategies on different cell types
and cellular processes remains a challenge. Although a
wealth of high-resolution transcriptomic data has been
produced, every study employs different quality control
metrics and downstream processing pipelines, which
impedes a direct comparison of the obtained insights.
For instance, the parameters for filtering low quality
cells are largely inconsistent in three major atlases of
calorie restriction [7], heterochronic parabiosis [8] and
exercise [9]. Moreover, the depth of the analysis varies
from study to study. While some studies focus on
describing the transcriptional changes caused by an
intervention alone [10], others include computational
modeling approaches to interrogate effects on the gene
regulatory network or cell-cell interactome [7-8].
Nevertheless, the use of different computational tools
largely prohibits a direct comparison even though the
same kind of analyses were performed in different
studies. Thus, in order to rigorously compare the effects
of rejuvenation strategies, it is crucial to unify the
processing of the data and the subsequent analysis.

Computational network biology approaches have shown
great success in providing mechanistic insights by linking
different scales of biological organization, including
transcriptional regulation, intracellular signaling and
intercellular communication, thereby generating testable
hypotheses [11]. For instance, pre-existing work has
explored the changes in transcription factor (TF) activity
associated with age by using network approaches to
estimate TF expression based on the presence of its
regulons [12]. As such, these approaches would allow
the characterization of the rejuvenation effects on
different cellular processes determined by signaling
and transcriptional regulation as well as cell-cell
communication. Moreover, following a network-based
approach allows the identification of master regulators
of each strategy and combining them could enable a
more holistic rejuvenation, i.e., a more complete set
of rejuvenated cellular processes.

Here, we introduce SINGULAR (Single-cell RNA-Seq
Investigation of Rejuvenation Agents and Longevity), a
cell rejuvenation atlas that characterizes the response to
cellular rejuvenation strategies at the single-cell level in
a unified analysis framework. In particular, we propose
to view aging as a metastable transcriptional state
associated with loss of regular physiological function.
Conversely, rejuvenation entails the conversion from an
aged to a more youthful transcriptional state.

In this regard, we characterized the effect of 6
rejuvenation strategies across 9 studies on 73 cell types
at the gene regulatory network, intracellular signaling,
cell-cell communication and cellular process level.

Moreover, we identified master regulators at every
level of biological organization and identified common
targets across immune cells. Finally, we exemplify how
SINGULAR can be exploited to select drugs that could
mimic the effect of complex interventions. Thus, we
expect SINGULAR to be of great utility in informing
further advances in human age reversal.

RESULTS

A unified processing and analysis pipeline for single-
cell based rejuvenation studies

To overcome the abiding issue of heterogeneous
processing and analysis approaches between different
studies, we propose a unified multiscale analysis
pipeline that allows for the characterization and
comparison of the effects of rejuvenation interventions.
Starting from quantified expression profiles of single-
cell RNA-seq experiments from treated and untreated
donor samples, our pipeline first filters low quality
cells based on dynamic thresholds for the percentage
of mitochondrial and ribosomal reads as well as
the relationship of read counts to detected genes.
Next, the expression profiles of all cells in a dataset
after regressing out the effect of cell cycle induced
differences and normalization using scTransform [13].
Finally, the optimal clustering of cells is automatically
identified by maximizing the Calinski-Harabasz Index
[14].

After processing the data, our pipeline analyzes
each dataset of treated and untreated samples at
different levels of biological organization. Initially,
it characterizes differentially expressed genes and
the cellular processes they belong to. Subsequently,
transcriptional regulatory networks (TRN) among
differentially expressed genes by following a previously
published method [15]. In brief, assuming an “inhibition
dominant” regulatory logic in which one upregulated
inhibitor is sufficient to cause the downregulation
of a gene (no matter the number of activating
relationships), a prior knowledge network (pkn) of TF
- gene interactions is pruned to remove interactions
in which the gene activity is behaving differently
to what is seen in the differential expression profile.
As a next step, our pipeline integrates signaling and
transcriptional regulation to reconstruct sustained
signaling cascades and identify their key molecules
using SigHotSpotter [16]. Eventually, we employ
InterCom to interrogate intercellular communication
by reconstructing cell-cell interactions mediated by
ligands and their cognate receptors [17]. In brief,
InterCom infers ligand-receptor interactions by
modeling intracellular signaling and downstream TF
expression to ensure compatibility.
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We collected 9 previously published single-cell RNA-
seq datasets of heterochronic parabiosis (3 datasets),
calorie restriction (1), exercise (1), metformin (2),
rapamycin (1) and in vivo partial reprogramming (2)
[7-10, 18-22] (Figure 1A, Supplementary Table 1,
Supplementary Figure 1). As expected, we observed
substantial technical variability in these datasets
evidenced by large differences in sequencing depth,
which further underscores the need for a homogeneous
data processing pipeline (Figure 1B). Altogether, the
employed datasets span a total of 74 cell types across
18 organs. Notably, tissues from the central nervous
system, adipose tissue, liver and bone marrow could
be found in multiple intervention datasets. To begin
with, we set out to characterize the differential
expression patterns of each cell type in each organ
in response to the individual rejuvenation strategies
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and identified a considerable heterogeneity (Figure
1C). While systemic interventions such as calorie
restriction and heterochronic parabiosis consistently
exert large effects on the transcriptome of multiple
organs, metformin has little to no effect on the organs
it has been examined in. Interestingly, although
exercising is directly affecting the muscles by
diverting blood to them, the largest transcriptional
effects were observed in the liver, artery and spinal
cord.

Identification of transcriptional master regulators
that mediate rejuvenation effects

In order to gain insights into the regulatory relationships
explaining the observed differential expression profile,
we reconstructed TRNs among differentially expressed
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Figure 1. (A) Overview of the SINGULAR project and its initial motivation. Publicly available datasets for several rejuvenation interventions
were analyzed in this study. With the exception of Parabiosis, analyzed from three datasets, Reprogramming, which was analyzed from two
datasets, and Metformin, also used in the Rapamycin experiment condition, every condition had data from one study. SINGULAR combines
a unified processing pipeline for all the datasets with three main tools to explore transcriptional regulatory networks, signaling pathways,
and cell-to-cell ligand receptor interactions. (B) Example comparison of the technical heterogeneity motivating this study. UMI counts
across organ systems and studies, as well as the organs sample in each of the different studies, both vary greatly. (C) Comparison of counts
of unique upregulated and downregulated genes from different studies grouped at the organ level, derived using the Delegate method.
Even after applying SINGULAR’s unified preprocessing pipeline, substantial heterogeneity by organ and study in the transcriptional

response to rejuvenation remains.
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genes for each cell type in different tissues. As a
result, we obtained 317 TRNs of cell types that were
affected by a rejuvenation intervention. On average,
TRNs are composed of 72 genes (range: 2-867)
although most networks contain less than 35 genes
(Figure 2A). Interestingly, the size of the TRNs is
only weakly related to the number of differentially
expressed genes (Pearson correlation, r = 0.21, p <
0.001), which suggests that the transcriptional response
to rejuvenation interventions is dependent on other
regulatory mechanisms. In this regard, we hypothesized
that signaling dependent TFs, whose activity is not only
mediated by their expression level but also extracellular
signals, may regulate the genes that cannot be explained
in the TRNs. Indeed, using a previously curated
collection of signal-dependent TFs [23], we found
between 77.8% and 100% (median 87.97%) of genes
that are differentially expressed, have a known potential
regulator but are not part of the TRNs can be regulated
by signaling dependent TFs. In addition, we assessed
how hierarchical each network is using the Krackhardt
Hierarchy Score and found the TRNs to be highly
hierarchical (average: 0.994, range: 0.932-1) (Figure
2B). This indicates the presence of a few ‘master
regulators’, i.e., TFS that explain a large fraction of gene
expression changes (see Methods for details).

Based on network statistics, we sought to identify these
master regulators and simulated the downstream effects
of activating a single TF in the network to assess the
number of genes whose differential expression could be
determined by this gene alone. Thus, a TF with a score
of ‘1’ determines all genes in a network while a TF
with a score of ‘0’ determines no other gene. Following
this approach, we detected 493 TFs with a non-zero
score across all cell types, organs and interventions.
However, the majority of these TFs only act as master
regulators in less than 5 conditions (Figure 2C).
Moreover, the master regulator score of many TFs is
low across the majority cell types and interventions.
For example, the rejuvenation response in adipocytes
after exercising is orchestrated by the co-expression
of Clock and Arntl, which induce different down-
stream factors depending on the organ of origin. On
the other hand, Nfkb and Esrl regulates varying
fractions of differentially expressed genes depending
on the intervention (Supplementary Figure 2A). Indeed,
it is not uncommon that in different conditions both
shared and distinct mechanisms are found, suggesting
therapeutic approaches to be equally promising through
similar mechanisms. In basal cells of the Skin, for
instance, Srf, Cebpb, Atf4, Jun and Myc shared the
majority of their downstream regulatory target genes
whereas other TFs mostly acted in a non-overlapping
manner (Supplementary Figure 2B). Similar patterns
could also be found in different cell types of the same

intervention, with Ddit3, Spib and Cebpb mediating the
effect in the granulocyte lineage while the remainder of
the transcription factor response is determined by the
maturity of the cell (Supplementary Figure 2C). Not
surprisingly, we also observed distinct mediators of
the intervention response. For instance, Ybx1, Klf4 and
Ets1 were found to be master regulators of exercise and
calorie restriction in hepatocytes, whereas only Foxo3
attained a high master regulator score in case of
heterochronic parabiosis (Supplementary Figure 2D).

Next, we aimed at interrogating the most common
intervention mediators and selected the 30 TFs that have
the highest average master regulator score across all
cell types (Figure 2D). Surprisingly, when contrasted
against previously existing analysis that documented
substantial declines or increases in TF activity with
ageing [12], the overlap with those TFs is limited; with
only 4 of our 30 mater regulators appearing in such
an analysis (Nfkbl, Irfl, Arntl and 1d3). Moreover,
the sign of the change in TF activity varied depending
on cell type, rather than being consistently positive
or negative. This would suggest a marked distinction
between the regulatory agents associated with age and
those able to orchestrate the rejuvenation response.

Interestingly, our master regulator TFs have been
previously associated with diverse cellular functions,
including differentiation, proliferation, immune response
and cell migration. Intriguingly, when grouping these
TFs by their master regulator score in every cell
type, we observed the presence of several clusters. As
a general observation, we conclude that our master
regulators rather group by intervention instead of
cell type. In light of the diverse set of enriched
cellular processes, this suggests the induction of distinct
signaling pathways that differentially activate broad
TFs. However, there exists one cluster that almost
exclusively contains immune cells after treatment of
heterochronic parabiosis or calorie restriction (Figure
2D; right part). Although all of these TFs contribute
to the mediation of the intervention effects, Jun,
Junb, Jund, Atf4 and Fos, all of which belong to the
AP-1 transcription factor complex, display a consistent
involvement (Figure 2E). In addition, we observed that
many smaller clusters are formed that predominantly
contain a single master regulator even though the AP-1
complex TFs mostly co-occur. The presence of the AP-1
complex across multiple interventions prompted us to
dissect the involvement of all known subunits [24]
separately. Consistent with the known dimerization
patterns of the AP-1 complex [25], Fos and Jun clearly
emerged as the most common master regulators across
interventions and cell types. In contrast, other Jun-,
Fos- and Atf-family TFs act more selectively as master
regulatory, which leads us to hypothesize that the cell
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Figure 2. Properties and clustering of master regulators in the rejuvenation response. (A) Ridge plot of network size, calculated
as sum of unique TFs and targets for each regulatory gene network, grouped by study (bin size = 30, average number of genes 72, median
number of genes 31, range 2-867). Provided enough distinct regulatory networks are observed, their number of elements can vary
between organs and cell types of the same dataset. (B) Krackhardt hierarchy scores of all TRNs. In this case, we universally see values very
close to 1 (mean 0.994, rage 0.932-1), indicating a very hierarchical regulatory response for all rejuvenation interventions. This motivated
the search for master regulators in the transcriptional networks. (C) Distribution of instances of a specific TF being observed in each of the
TRNs. The majority of TFs are seen in only a few regulatory networks, but a minority appear in a significant fraction. (D) Heatmap of the TF
score (see online methods) for the 30 TFs with the greatest average ranking across all TRNs. Clustering was performed with the manhattan
distance and the McQuitty method. Coordinated TF responses can be observed, as well as activity patterns strongly associated more with
the rejuvenation condition than the cell type, potentially uncovering more holistic rejuvenation interventions by targeting master

AGING

WWWw.aging-us.com 5



regulators behind different interventions. (E) Heatmap subset transcription factors known to be part of the AP-1 complex. Several clusters
that contain a single master regulator can be observed in the differential rejuvenation response. Given these cofactors are expected to be
coexpressed, this suggests a rejuvenation response in immune cell types under Calorie Restriction and Parabiosis that relies on the action of

distinct AP-1 dimers.

type and intervention specific effects are exerted by
distinct AP-1 dimers. Interestingly, although previous
studies have documented the influence of this complex
in promoting age-related inflammation (“inflammaging”)
[26], our analysis strongly suggests their action as anti-
aging mediators depending on their dimerization.

To support the involvement of the identified master
regulator TFs, we cross-referenced the 30 TFs having
the highest master regulator score with aging-associated
genes contained in GenAge [27]. As a result, we found
53% (16/30) master regulators to be linked to aging
with varying degrees of evidence. In particular, Arntl,
Cebpb, Foxol and Jun possess strong evidence and
have been directly linked to aging in mammalian and
non-mammalian model organisms. In addition, the gene
products of Myc and Nfe212 have been directly linked to
aging in a cellular model system and Foxo3 has been
shown to be involved in human longevity. Interestingly,
several genes, i.e., Ar, Egrl, Jun and Spl, have been
shown to regulate genes previously linked to aging.
Less evidence is provided for Hifla and Nfkbl, which
are known to be involved in pathways or mechanisms
linked to aging. Finally, Ddit3, Fos and Stat3 are known
effectors of aging-related genes.

Despite the TFs that have been found in GenAge, we
collected publicly available transcriptomic perturbation
data of the top 30 master regulators and applied
MultiTIMER [28], a multi-tissue transcriptional aging
clock, to quantify potentially rejuvenating effects. Due to
the nature of MultiTIMER as a predictor of transcriptional
age in bulk data, we chose to validate the master
regulators found in SINGULAR with experiments
available in the Gene Expression Omnibus (GEO). In
particular, we found knockdown/knockout experiments
for KIf4, Irfl, Atf4, Myc, Hifla and Esrl in cell types
where they have been identified as master regulators
(Supplementary Table 3). Since master regulators are up-
regulated upon rejuvenating interventions, we would
consequently expect the age of normal cells to increase
after their knockdown or knockout. Indeed, we observed
increases in the predicted cellular age after perturbing
KIf4 (9.1 years), Irfl (3.9 years), Hifla (2.6 years). In
addition, we also collected transcriptional profiles after
overexpression of KIf4 and Myc. Interestingly, the
predicted cellular age after Myc overexpression is
considerably younger (9.7 years) whereas it slightly
increased in case of KIf4 (1.6 years). These results suggest
that master regulators act synergistically with other TFs
to exert a rejuvenating effect in a cell type dependent

manner. This idea is further supported by current partial
reprogramming strategies that upregulate Klf4 and Myc
in combination with Pou5fl and Sox2 to achieve a
significantly higher reduction in cellular age compared to
what we observed for KIf4 or Myc alone [29].

Crosstalk between transcriptional master regulators
and intracellular signaling response

Most of the TFs with the highest master regulator
potential across interventions are well known to be
activated or inhibited by multiple signaling pathways.
Thus, we set out to identify the active signaling molecules
that are likely to mediate the activation of master
regulators in each cell type, tissue and intervention, as
described before. Moreover, we compared the accordingly
detected signaling molecules in treated and untreated
samples to select those that are differentially active
between both conditions. As a result, we identified 452
molecules in 33 cell types across conditions and organs.
Of these molecules, 74 directly activated the downstream
TFs of the corresponding TRNs after treatments. The full
set of results can be viewed in the SINGULAR database.

To interrogate the function of the integrated signaling
cascades and their induced TRNs, we performed Gene Set
Enrichment Analysis (GSEA) of their constituent genes
[30]. Strikingly, 23 integrated networks are negatively
enriched in aging gene sets derived from Tabula Muris
Senis, as found in The Molecular Signatures Database
(MSigDB) [31]. This finding supports the rejuvenating
effects of different interventions on cell types on
the basis of an independent dataset (Figure 3A-3C).
After heterochronic parabiosis however, neutrophils
predominantly displayed a pro-aging signature (Figure
3D). This is consistent with a previous study reporting an
increase of a gene signature of neutrophil activation in
hematopoietic stem and progenitor cells after parabiosis
treatment [8]. Of note, especially in the case of parabiosis,
we observed a reduction of aging signatures derived from
various tissues. Nevertheless, in other cases, the enriched
signatures precisely matched the tested cell type, such as
in case of lung B cells where Grb2 mediates the activation
of the transcriptional master regulator Fos (Figure 3B,
Supplementary Figure 3A).

Despite the reversal of pro-aging signatures in multiple
cell types, we observed other enriched functions that
are consistent with our current understanding of
the interventions. For instance, E2f target genes, cell
cycle control and the G2m checkpoint were negatively
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enriched after partial reprogramming of the muscle,
which displays an expected decrease in cellular
proliferation that is consistent with previous studies
indicating an up-regulation of the cell cycle inhibitor
Cdknla in the critical treatment window [32]
(Supplementary Figure 3B). Moreover, in the same
experiment, cardiac muscle organogenesis was positively
enriched suggesting an ongoing re-commitment to a
fully differentiated state after de-differentiation (Figure
3C, Supplementary Figure 3B). Interestingly, while
Neutrophils in the bone marrow show signs of overall
rejuvenation in response to heterochronic parabiosis,
their inflammatory potential increases (Supplementary
Figure 3C). This implies that parabiosis could have
harmful effect on aging alongside its rejuvenating
benefits. Finally, the response of T cells in the
peripheral blood to Parabiosis2 was mediated by the
kinase Pak2 and the master regulators Nfkbl and
Stat3. As a result, we observed a decline in the

known aging determinant. In fact, hypomorphic Pi3k
mice show an increased longevity (Supplementary
Figure 3D).

Integration of gene network inference, signaling and
intercellular communication analysis

Based on our finding that the transcriptional response to
several interventions could be linked to sustained
signaling cascades that get activated, we finally aimed
at interrogating whether these effects are induced by
ligand-receptor mediated cell-cell interactions. Thus, we
employed InterCom [17] to reconstruct the cell-cell
communication networks of each treated and untreated
organ. Similar to our assessment of the intracellular
signaling cascades, we focus in the remainder on the
most significant interactions that are unique to the
treated condition and that involve a receptor as a key
signaling molecule. The complete information can be

Pi3k/Akt/mTOR signaling pathway, which is a well- accessed in the SINGULAR database.
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Figure 3. (A) Normalized enrichment scores for different cell types in different organs in the Parabiosis2 dataset. We observe substantial
heterogeneity, including situations where a cell is negatively enriched both for its actual cell type and for the aging signature of other, very
different lineages. This suggests that Parabiosis may be the most comprehensive rejuvenation intervention at this level of analysis. It must
be noted that Neutrophils were the only cell type with a mixed rejuvenating and aging signature, but this is consistent with known
responses to heterochronic parabiosis experiments. (B) Normalized enrichment score for the shared component between the TRN and the
signaling network for Muscle fiber and Lung B cells under the Exercise condition. In this example, the geneSet cell markers for an aged
transcriptome perfectly match the celltype the multi-modal network was derived from. (C) Normalized enrichment score for the shared
component between the TRN and the signaling network in Reprogramming dataset for Muscle stem cells. In this example, the negative
aging signature is found for three different cell types, none matching the one the data was derived from. (D) Bubble plot illustrating the
number of cell types per organ and the fraction of cell types per organ where we were able to detect a sustained signalling network
associated with the rejuvenation condition, per organ and study. Crosses indicate absence for any cell type. Full equivalence between the
geneSet legend labels and the Tabula Muris Senis enrichments can be found in Supplementary Table 2.
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Deriving mechanistic insights and testable hypotheses
from the response to different rejuvenation strategies
could significantly accelerate the development of new
anti-aging treatments. Therefore, we focus on two
illustrative examples to demonstrate the potentiality of
our unified analysis approach. First, we found our
analysis to recapitulate known cell communication
effects in macrophages after heterochronic parabiosis
(Figure 4A). More specifically, our analysis revealed
that Gnai2 activates the AP-1 complex genes Jun
and Fos upon dissociation of Ccr2 upon recognition
of its cognate ligand Ccl2 [33]. Activation of the
AP-1 complex in turn leads to the up-regulation of
known chemotaxis related genes, such as Cd14, Cxcl2
and Vegfa [34-36]. Indeed, positive enrichment of
chemotaxis-related gene sets in a GSEA of the signaling
cascades and downstream TFs underscored the chemo-
tactic expression program induced by Ccr2 (Figure 4B).
As a second example we chose to illustrate a novel,
non-canonical signaling cascade that has not been
reported before. In response to exercising, Purkinje cells
in the cerebellum form an autocrine loop and interact
with oligodendrocyte precursor cells via the Fgfl0-
Fgfr2 axis (Figure 4C). While our analysis recapitulates
the downstream activation of Runx2, which in turn up-
regulates and guarantees the expression of Fgfr2, we
found that Pax6 is activated by Tcfl2 in response
to Fgfr2 activation. Although the function of Pax6
has not been reported in Purkinje cells, it is a known
neuroprotective transcription factor [37].

Identification of potential drugs targeting key TFs
and signaling molecules

In order to demonstrate the utility of SINGULAR, we
asked whether we can determine drugs that can target
the identified TF master regulators and key signaling
molecules. For that, we collected all available drug-
target relationships in DrugBank and searched for
drugs that could activate our master regulators or
mimic the effect of rejuvenation interventions on key
signaling molecules. For this purpose, we classified
TFs as master regulators if they determine at least 30%
of the network TFs when activated according to our
simulation studies (see online Methods). Unsurprisingly,
of the 239 transcriptional master regulators across all
cell types, organs and interventions, only 17 could be
activated by drugs (Figure 4D). Moreover, these TFs
predominantly belong to the class of nuclear receptors,
including Nr3cl, Vdr, Nrli2, Rxra and Ar. However,
notable exceptions are the AP-1 complex proteins
Jun and Fos as well Trp53. These further underscores
the suitability to interfere with the AP-1 complex to
mimic the effect of complex interventions. In order
to determine whether any of these drugs possess
known rejuvenating effects, we cross-referenced them

with DrugAge, a database of aging related drugs [38].
As a result, we found several compounds with
demonstrated effects on lifespan in model organisms.
For instance, Curcumin, a Vdr agonist, extends the
maximum lifespan of D. melanogaster on average by
19.5% at high concentrations and Vitamin D3 extends
the average lifespan of C. elegans by 26.8% in a dose-
dependent manner. Moreover, Bezafibrate, a partial
agonist of Nrli2, has been shown to increase the
average lifespan of C. elegans by 13%. In contrast to
TFs, the differentially active key signaling molecules
between treated and untreated conditions are generally
better druggable (Figure 4E). In particular, the
microglia specific key signaling molecules after
parabiosis App and Mapk14 are targeted by 24 and 56
drugs, respectively. However, none of the identified
molecules target both genes.

DISCUSSION

In this study, we performed a unified analysis of
different rejuvenation interventions, with the goal of
leveraging network biology to provide a rigorous
comparison of their effects and mediators at different
scales of biological organization. In doing so, we
uncovered several master regulators orchestrating the
rejuvenation response, and compared their influence
across different organs, experiments and cell types.

Our approach successfully identified several previously
known age-related TFs. For instance, we found Arntl to
be a master regulator in rejuvenation, corroborating its
earlier identification as the TF with the most significant
age-related decline in activity in at least one prior
analysis [12]. However, only three other matching TFs
were identified, with the sign of TF activity changes
varying substantially by cell type. This suggests notable
differences between transcriptional changes associated
with aging and the regulators of rejuvenation. It also
uncovered previously undocumented mediators of
rejuvenation interventions. Moreover, in cases where
the transcriptional mediators are known, our analysis
provides novel insights. For example, while the AP-1
complex formed by Fos and Jun has been described
to regulate diverse cell functions, and in particular
the inflammaging response, our analysis further
demonstrates that different subunits and cofactors
serve as master regulators of the response to specific
interventions. In light of our findings and a recent
study that highlighted an up-regulation of the Jun-Fos
dimer expression, which is accompanied by increasing
inflammation, it is plausible that AP-1 dimers composed
of other subunits are responsible for inducing anti-
aging effects [24]. Indeed, although AP-1 binds to a
palindromic DNA motif, its specificity is conveyed
by the bZIP subunits [39]. However, directing the

www.aging-us.com

AGING



dimerization as a potential therapeutic approach remains
a challenge due to the heterogeneous involvement of
subunits in different cell types. Moreover, transcription

factors have long been considered “undruggable” and
only incremental progress has been made, which
aggravates the search for potential interventions that
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cascade to activate the AP-1 complex, which leads to the activation of chemotaxis genes. (B) Further validation of this well-known pathway
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could be translated to the clinics [40]. Apart from the
AP-1 complex, our analysis revealed the transcriptional
stress response TFs NFE2L2 and MAF as master
regulators of certain rejuvenation interventions in
different cell types. Indeed, MAF and NFE2L2 have
been shown to dimerize and regulate gene expression
programs that protect against oxidative stress, which
are lost with age [41]. Moreover, over-expressing MAF
has been shown to rescue these protective expression
programs and preserve fitness in an animal aging model
[41]. Conversely, the reduced activity of NFE2L2 leads
to increased cellular senescence and inflammation [42].

The application of current intervention strategies with
the largest effects across tissues, i.e., heterochronic
parabiosis and exercising, is impractical in humans. In
contrast, our multiscale analysis pipeline sheds light on
the regulatory mediators of their effects. This offers the
unique opportunity to design new approaches that mimic
or combine the effect of these complex interventions
in the future. For instance, we showed that immune
and skin cell types emerge as having common master
regulators across interventions, which suggests them
to be amenable targets for intervention. Intriguingly,
these immune cells whose rejuvenation is hypothesized
to lead to a significantly increased healthspan [43].
As of today, immune system rejuvenation is mostly
considered for individual cell types [43]. However,
despite stark phenotypic differences of immune cell
types, our analysis suggests that rejuvenation to the
extent it is achieved in heterochronic parabiosis is
possible by targeting a common set of regulators.
In addition to mimicking the effects of complex
interventions, our analysis also offers the potential
to experimentally validate non-overlapping master
regulators from different inferred gene regulatory
networks for additive or even synergistic benefits. For
instance, Ybx1, KIf4, Etsl and Fos orchestrated the
response of hepatocytes to exercising while in the case
of parabiosis, Foxo3 appeared to be the sole master
regulator. Due to the differences in the transcriptional
response, the combined targeting of these TFs is
expected to have synergistic effects.

Despite the advantages of our unified analysis pipeline
and the utility of SINGULAR we discussed before, our
study has a few limitations. First, the comparisons of
cell types across interventions suffers from potential
biases due to the number of cells gathered for each cell
type in each study. Although we did not observe any
implications in the datasets we employed for this
study, an empirical analysis of the employed tools
suggests that small populations of cells (less than 50)
typically result in a higher number of false positive
interactions. Second, when interrogating the cell-cell
communication network, we rely on ligand-receptor

mediated interactions. It is well known that other
communication channels, such as extracellular vesicles,
contribute to the exchange of information between
cells. However, incorporating this information requires
targeted experimental assays, which are currently still
not widely applied. Third, differential expression
testing in sc-RNAseq data is always at risk of false
negatives due to drop-outs [44], a concern particularly
acute with genes with a generally low level of
expression like TFs. We nevertheless take steps to
mitigate the impact of this concern. For instance, we
selected the DELegate method for differential gene
expression tests (see Methods) and focused on TFs
that consistently appear across organs, cell-types and
interventions. Finally, caution is warranted when
interpreting the results due to inherent differences in
the coverage of organs. For instance, while the effect
of metformin was assessed in the intestine, adipose
tissue and muscle, only the intestine was profiled in
case of rapamycin.

Nevertheless, we believe that SINGULAR is of
great utility for better understanding the mechanisms
underlying different rejuvenation interventions and to
identify novel rejuvenation agents by providing a
comprehensive array of target genes in the pursuit of
a holistic anti-aging strategy.

METHODS

Unified processing of the sc-RNAseq rejuvenation
datasets

Data analysis was done in Seurat version 4.3.0
(R versions 4.2.3 and 4.3.0), following a unified,
biologically informed approach in preprocessing similar
to Subramanian et al. [45].

All datasets were processed from cellranger matrix,
feature and barcodes when possible. The main exceptions
were the second Parabiosis dataset [8], which was
processed from FASTQ files with cellranger 6.1 with
all argument set to default except an explicit call to —
include-introns to get processed cellranger files, and the
second Reprogramming dataset [18], in which the raw
count matrix after quality control offered by the authors
was used for all downstream analyses, due to the
unavailability of the VectorBuilder sequences necessary
to build the raw count matrices from the raw reads.

Every dataset was further processed with a unified
preprocessing pipeline in which the median absolute
deviation argument of the our filterCells function was
set to 3 to filter outlying cells based on mitochondrial
counts, ribosomal counts, number of features and number
of counts, with the latter two further filtered based in a
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linear model with the formula = log10(nFeature_ RNA) ~
log10(nCount_RNA)) for unified quality control.

Resulting Seurat objects were further normalized with the
SCT transform function with the vars.to.regress argument
with “C.C. difference” for cell cycle adjustment and
vst.flavor set to “v2”. Doublets were removed using
DoubletFinder version 2.0.3. Cell cycle scoring for
adjustment relied on the cell marker database annotation
retrieved from Ensembl and provided in the repository
as a supplementary file.

Integration of within-experiment sc-RNA seq datasets
and removal of unwanted sources of variation

Integration of the datasets was performed with
SCTtransform [13] splitting every Seurat object by
biological replicates of the same condition and sex (if
any) sex (if only this was available) and condition in
every case. rPCA dimensionality reduction was used
together with the SCT normalization method.

Clustering of sc-RNAseq data and cell
identification

type

LSK and Skin in the second parabiosis dataset [8]
were downsampled (keeping original files 1-4 for the
former and 5-8 for the later) due to the full data
causing extreme numbers of clusters with the Monocle3
clustering function.

Every other dataset was clustered in full after
preprocessing with the cluster_cells argument of the
Monocle3 library version 3.1, with 10 neighbors, leiden
clustering, UMAP used for dimensionality reduction
and iterating 5 over several orders of magnitude of the
resolution parameter. Every iteration was scored with
the Calinski-Harabasz Index and the clustering with the
highest score kept, except if more than 30 clusters were
detected after this optimizing process, in which case the
partitions function of Monocle3 was used instead.

Preliminary cell type assignments were done using
SCINA 1.2.0, but this was substantially supplemented
by manual annotation with the support of the literature,
the cell marker database and the panglao database of
single-cell gene markers, as well as support from the
markers provided by the original authors of each study,
if it was provided.

Differential gene expression test for sc-RNAseq data

Differential gene expression analysis was in every case
performed using the DElegate R package version 1.10
(https://github.com/cancerbits/DElegate) a wrapper to
use the DESeq-2 differential gene expression analysis

assigning cells to pseudo-replicates. This choice stems
from its positive benchmarking against other methods in
the metrics of precision, sensitivity and false discovery
rate [46]. Moreover, random assignment of pseudo-
replicates for pseudo-bulk analyses is the best option to
mitigate the concern of drop-outs that is always present
in sSCRNA-seq data. Final results were filtered to only
keep those cases when the average log fold change in
gene expression had an absolute value greater than 0.25
or the gene was seen in more than 10% of the cells in
that cell type for both conditions. When more than one
control condition was provided (such as isochronic
parabiosis and old untreated) both were taken as the
comparison group against the rejuvenation intervention.
Comparisons were always made against the old
condition, dropping the young data, if any, from further
analysis, even if they were used during the integration.

Gene set enrichment analysis

Analysis of enriched gene ontology functions and KEGG
pathways was realized with package WebGestaltR
version 0.4.4 and the ORA (overrepresentation analysis)
method. Differentially expressed genes at the p-value
adjust < 0.05 significance level were used as a query,
while all the genes in the original count matrix (i.e., the
RNA assay Seurat object rownames) were used as
background. As illustrated in the attached repository, the
remaining arguments were overrepresentation analysis,
false discovery rate corrected with the Benjamini-
Hochberg with a threshold of 0.05.

Strategy to identify cell-type specific transcriptional
master regulators

Inference of the master regulators uncovered in this
study was done using R library GRNOpt, developed for
a previous manuscript [15]. Differential gene expression
results were booleanized by setting the log fold changes
in the rejuvenation condition filtered as described above
to 1 if they were positive and to 0 if they were negative.
The inhibition dominance logic rule was used for
building the transcriptional regulator networks with the
prune gurobi function. This method has been utilized
in prior studies to investigate cell state transitions,
especially in the context of stem cell differentiation.
Indeed, this approach is specifically designed to identify
master regulators that orchestrate transcriptional shifts
responsible for initiating and maintaining changes over
time [47].

Every TF in a gene regulatory network was scored by
exploring the consequences of initiating the state of
every element in the network to undetermined and
examining the consequences of activating each TF with
a depth-first search algorithm. The fraction of the final
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state of the network (as described by the booleanized
gene expression) that matched all the downstream
changes due to this activation was then the TF score,
implementing the same inhibition dominance logic rule
that is used during the creation of gene regulatory
network, in which any number of inhibitory relationships
takes precedence (i.e., sets the state to ‘inhibited’) over
any number of activating relationships. In this way, a
TF in a completely hierarchical connected relationship
to the rest of the network that could explain its entire
state by being activated would get a score of 1.0, while
sparse networks in which not all the elements are
connected will always get a fractional score, an end
node that was only scored based on predicting its own
state would get a score of 1/(N), where N is the size of
the network, and an inhibited gene in the booleanized
gene expression would get a score of 0, being unable to
explain its own state relative to the differential gene
expression if activated.

The  TF-regulon interactions  database  from
CollecTRI [48] was used as a previous knowledge
network. This previous knowledge network was
retrieved using the omnipath python library with
the omnipath.constants.InteractionDataset. COLLECTRI
function with the 10090 argument (to get the interactions
collected for mouse). Conversion of Protein IDs to gene
symbols was performed with the getBM argument of
biomart, with rows with non-matching NA values and
those where the consensus stimulation and consensus
inhibition entries were not opposites filtered out. Finally,
for the Calorie Restriction study (performed on Rattus
norvegicus) a further conversion of the mice previous
knowledge network developed as described above was
performed, from the mouse to the rat orthologs, using the
“https://dec2021.archive.ensembl.org/” Esembl mirror
during the call to the getL DS function.

Endpoint previous knowledge networks for mice and rat
are provided in the repository.

Finally, during the development of the gene regulatory
network, duplicate interactions and values in the TF
“from” column that were not transcription factors were
filtered out, both for the previous knowledge network
and the booleanized differential gene expression input.

Discovery of stable signaling networks and signaling
hotspots from sc-RNAseq data

For the cell communication results, we used
Sighostpotter (https://gitlab.com/srikanth.ravichandran/
sigHotSpotter) with a custom modification in the
for_plotting_networks_functions.R function .trimResults.
Lines 56 and 61 were replaced with res_trimmed <-
res_trimmed(res_trimmed(,2)>0.7,) and res_trimmed <-

res_trimmed(res_trimmed(,2)<0.3,) respectively, to
facilitate downstream analysis. Everything else was as
seen in the repository and the modified version is
provided with the main repository for a custom install.

sigHotSpotter was selected for its ability to model both
canonical and non-canonical signaling networks, which
generate locally stable configurations. This modeling
approach is ideal for studying the sustained, long-term
changes involved in both aging and rejuvenation inter-
ventions. Moreover, sigHotSpotter identifies ‘hotspots’
in the cascade that sustain the new cell state.

Results were analyzed with the sigHotSpotter pipeline
function with cutoff value set to 30, percentile set to 70,
and the RNA assay counts as input matrix.

Signaling networks were kept after following two
conditions. First, both the rejuvenation intervention and
the control condition needed to have a non-NA results.
Then, only signaling networks where the signaling
intermediate was activated in one condition and
inhibited in another (activation defined as a final score
above 0.70, and inhibition as a value below 0.30,
NA entries included) and present in the rejuvenation
intervention were kept for downstream analysis.

Cross-talk between TRNs and signalling networks

To identify the cross talk between the master regulator
transcriptional networks and the Sighostpotter results,
filtered SigHotSpotter results were subset by signaling
intermediate and the networks in which the same
transcription factor shared a node with outgoing
relationships both in the TRN and the SigHotSpotter
edges object from column were concatenated to compute
the connected components using igraph’s components
function with the mode “weak” argument. If there was
a single component, the elements of the entire shared
network were taken, while if there was more than
one, only the connected component with the signaling
intermediate was used for downstream analysis.

The elements of this combined network were then queried
for Gene Set Enrichment Analysis with the WebGestaltR
library (version 0.4.4) using the online enrich method
GSEA and three further queries from the Molecular
Signatures Database retrieved at https://www.gsea-
msigdb.org/gsea/msigdb. In particular, the M2 curated
gene sets, M8 cell type signature gene sets and M5
ontology gene sets were used.

Cell to cell communication analysis in sc-RNA seq
data

Intercom was used to model the communication
between cells as it pertains to those events that are only
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seen in treated rejuvenation conditions. For a complete
description of how the tool works, we refer to the
original work that introduced Intercom [17] but we offer
a summarized version as follows:

As a preliminary step, InterCom generates a scaffold
of experimentally validated receptor-ligand cell-cell
interactions, later integrated with intracellular signaling
networks and gene regulatory interactions. For ligand-
receptor interactions, a previously curated database [49]
had the extent of its relationship narrowed down to only
those ligands annotated as ‘Secreted’ in Uniprot.

For the intracellular signaling network scaffold, inter-
actions from databases both publicly available (Omnipath,
Reactome) and with limited access (MetaCore from
Thomson Reuters) were collected, choosing those
related to signal transmission (phosphorylation and
ubiquitination events). For transcriptional regulator
interactions, we again used Metacore, keeping only
direct interactions that were known to entail activation or
inhibition. These three elements compose the scaffold.

Regarding the analysis of the provided data, InterCom
calculates an interaction score for each potential cell-cell
interaction by multiplying the average receptor expression
and average ligand expression in all cells of a population
expressing the receptor or ligand, respectively.

The significance of these scores is then assessed
by comparing the scores of all potential cell-cell
interactions contained in the scaffold between the two
interacting cell types. Interactions with scores in the
top decile are considered significant and are the focus
of our analysis.

As it pertains to specific parameters in our analysis,
Intercom analysis was performed taking the SCT
integration counts as an input matrix and with the
sigcutoff and z.score.cutoff parameters set to 0. Every
other argument was left as default.

Results were further filtered to keep only the
interactions unique to the rejuvenation intervention and
with a significance score above 0.90, to keep the top
decile as usual, as described above.

Assessing the effect of MR perturbation on cellular age

To validate the discovered master regulators, we carried
out a search of perturbation data the Gene Expression
Omnibus (GEO), using ‘knockdown’, ‘knock-out’,
‘shRNA’ ‘overexpression’ and ‘knock-in’ as keywords
and selecting as ‘Study Type’ both ‘high throughput
sequencing’ and ‘expression profiling by array. In
addition, in order to keep comparisons informative, we

selected datasets that meet the following criteria: (1) The
relevant master regulator is perturbed. (2) This master
regulator is the only gene perturbed in the experiment.
(3) The study does not involve cancer, embryonic, or
similarly altered cell lines that would confound the
transcriptional age estimation. (4) The master regulator is
found in our single-cell data at least once in a closely
similar cell type to the one used in the bulk experiment.

All datasets that met these selection criteria and
included both control and perturbed data were used as
input for MultiTIMER [28], a transcriptional age clock
able to generate predictions for any tissue. Identifiers as
well as the difference in predicted age can be seen in
Supplementary Table 3. Master regulators shown in
Figure 2D that are not listed in Supplementary Table 3
either lacked perturbation data or did not meet the
specified criteria described above.

Expression data were converted into log2 of the rank
of the gene expression and further subset to the
intersection of genes present in all datasets before
comparing the difference in predicted biological age
between experimental data and controls.

Data availability

The following publicly available datasets were used in
the analysis of this study: GEO Accession numbers
GSE137869 (Calorie Restriction), GSE176206 and
GSE144600 (Reprogramming), GSE193093 and
GSE222510 (Parabiosis) as well as GSA CRA004660
(Parabiosis) and CRA007207 (Exercise).

Code for the processing pipeline and auxiliary functions
in the workflow is available at https://github.com/
jarcoshodar/singularsource.

SINGULAR is available as a publicly available interactive
database at https://singular.lcsb.uni.lu/. Source code for a
local install and exploration of the data is available at
https://git-r3lab.uni.lu/mohamed.soudy/singular.
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SUPPLEMENTARY MATERIALS

Supplementary Figures

Fraction of aged DGE rescued by rejuvenation interventions

3000

2000
Category

unaffected
. not rescued

. rescued

1000

0 -_.-.

CR EX MET PAR RAP REP
Intervention

Differentially expressed quantity

Supplementary Figure 1. Each bar represents, for a given intervention, the average size of the old versus young differential
gene expression set across organs and cell types. This is further categorized into two types of genes in the intersection between
genes seen in old versus young and rejuvenated versus old untreated: those where the sign of the change is different (‘rescued’) and those
where the sign remains the same (‘not rescued’). Given the sum of the rescued and not rescued fraction entails the genes for which we
have information to compare, it is remarkable that with some heterogeneity, a very big fraction of the genes is rescued, meaning their
expression state is successfully changed toward the state seen in young individuals. The noticeable exception is Metformin. Abbreviations:
CR: Calorie Restriction; Ex: Exercise; Met: Metformin; Par: Parabiosis2; Rap: Rapamycin; Rep: Reprogramming2.
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Supplementary Figure 2. (A) Heatmap of different TF scores for the Adipocyte celltype group. A shared Clock-Arntl mediated response
can be seen twice the Exercise condition, but the downstream factors of this regulation change. (Values with no row with a value greater
than .30 omitted). (B) Example of a highly dense network for two Basal cell types of the Skin. Srf, Cepbp Jun and Atf4 act in coordination in
both cases, but the regulatory pathway downstream of that is almost entirely non-overlapping, and involves several transcription factors
regulating each other. (Rows with no value greater than .30 omitted). (C) Different and shared rejuvenation factors, as well as less dense
networks, after maturation of Granulocytes in the Parabiosis condition. (Rows with no value greater than .30 omitted). (D) Shared and
distinct master regulators across and between interventions in Hepatocytes. (Rows with no value greater than .50 omitted). While Ybx1,
KIf4, Etsland Fos share a role in the rejuvenation response in both the Exercise and the Calorie Restriction conditions, two different
datasets replicate involvement of Foxo3 instead in Parabiosis. This is an example of two candidate non-overlapping targets that could be
investigated for additive or even synergistic rejuvenation benefits.
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Supplementary Figure 3. Gene set enrichment analysis of genes belonging to selected signaling cascades in (A) Lung B cells after

exercise, (B) Muscle stem cells after partial reprogramming, (C) Bone marrow neutrophils after parabiosis and (D) Peripheral blood T cells
after parabiosis.
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Supplementary Tables

Supplementary Table 1. GEO and GSA accession numbers of datasets used in this study.

Dataset Accession number
Calorie Restriction GSE137869
Exercise CRAO007207
Metformin GSE194386
Parabiosisl GSE193093
Parabiosis2 CRA004660
Parabiosis3 GSE222510
Rapamycin/Metformin GSE210669
Reprogramming GSE144600
Reprogramming?2 GSE176206

Supplementary Table 2. Mapping of gene set names (column “Long name”) to their corresponding abbreviation

(column “Short name”).

Long name

Short name

TABULA_MURIS_SENIS_LUNG_B_CELL_AGEING

TABULA_MURIS_SENIS_HEART _AND_AORTA_FIBROBLAST OF_CARDIAC_

TISSUE_AGEING
TABULA_MURIS_SENIS_SPLEEN_PROERYTHROBLAST AGEING

Bcell aging

Cardiac aging

Proerythroblast aging

TABULA_MURIS_SENIS_ MARROW_PRECURSOR_B_CELL_AGEING Hsc Bell aging
TABULA_MURIS_SENIS_KIDNEY_KIDNEY_LOOP_OF HENLE_THICK_ Kidnev agin
ASCENDING_LIMB_EPITHELIAL_CELL_AGEING yaging

TABULA_MURIS_SENIS_MARROW_HEMATOPOIETIC_PRECURSOR_CELL_

AGEING
TABULA_MURIS_SENIS_ MAMMARY_GLAND_STROMAL_CELL_AGEING

TABULA_MURIS_SENIS_ MAMMARY_GLAND_BASAL_CELL_AGEING

TABULA_MURIS_SENIS_ MAMMARY_GLAND_LUMINAL_EPITHELIAL _
CELL_OF MAMMARY_GLAND_AGEING

TABULA_MURIS_SENIS_BRAIN_NON_MYELOID_NEURON_AGEING

TABULA_MURIS_SENIS_GONADAL_ADIPOSE_TISSUE_MYELOID_CELL_

AGEING
TABULA_MURIS_SENIS_ MAMMARY_GLAND T _CELL_AGEING

TABULA_MURIS_SENIS_LIMB_MUSCLE_MESENCHYMAL_STEM_CELL_
AGEING

Bm precursor aging

Stromal aging
Basal cell aging

Epithelial aging
Neuron aging
Myeloid aging

Tcell aging

Mesenchymal aging

TABULA_MURIS_SENIS_SKIN_BULGE_KERATINOCYTE_AGEING Skin aging
TABULA_MURIS_SENIS_BRAIN_MYELOID_MACROPHAGE_AGEING Macrophage aging
TABULA_MURIS_SENIS_SPLEEN_MATURE_NK_T_CELL_AGEING Nkeell aging
TABULA_MURIS_SENIS_MARROW_NAIVE_B_CELL_AGEING Bm Beell aging

TABULA_MURIS_SENIS_LUNG_NON_CLASSICAL_MONOCYTE_AGEING

TABULA_MURIS_SENIS_GONADAL_ADIPOSE_TISSUE_MESENCHYMAL _

STEM_CELL_OF ADIPOSE_AGEING
TABULA_MURIS_SENIS_SPLEEN_T_CELL_AGEING

TABULA_MURIS_SENIS_HEART_ATRIAL_MYOCYTE_AGEING
TABULA_MURIS_SENIS_THYMUS_THYMOCYTE_AGEING

Monocyte aging
AdiMes aging
SpleenTc aging
Myocyte aging
Thymus Tc Aaging
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TABULA_MURIS_SENIS_LARGE_INTESTINE_LARGE_INTESTINE_GOBLET_

CELL_AGEING
TABULA_MURIS_SENIS_SPLEEN_PROERYTHROBLAST AGEING

TABULA_MURIS_SENIS_LUNG_B_CELL_AGEING
TABULA_MURIS_SENIS_LUNG_B_CELL_AGEING
TABULA_MURIS_SENIS_SPLEEN_MACROPHAGE_AGEING

TABULA_MURIS_SENIS_SPLEEN_GRANULOCYTE_AGEING

TABULA_MURIS_SENIS_LUNG_INTERMEDIATE_MONOCYTE_AGEING

TABULA_MURIS_SENIS_SPLEEN_B_CELL_AGEING

Goblet aging
Eryth Spleen aging
Lung Bc aging
LungBc aging
Spleen Mcr Aging
Spleen Gran Aging
Lung Mon Aging
Spleen Bc Aging

Supplementary Table 3. Average age predictions from MultiTimer after mock treatment (column
“Control_Avg_Age”) or TF inhibition or upregulation (column “Experimental_Avg_Age”). Positive and negative
age differences (Age_Difference) correspond to a pro- and anti-aging effect, respectively.

Experimental_

GSE Series CellType Method Gene Control_Avg_Age Avg_Age Age_Difference
GSE114284  BEAS-2B ko IRFL+IFNB  30.4647042486172  34.3877386364404  3.92303438782321
GSE140026 MO Macrophages ko ATF4 20.1668560093142  27.4402233049184  —1.7266327943958
GSE140026 M1 Macrophages ko ATF4 50.5196662856039  57.7682136158112  —1.75145266979273
GSE140026 M2 Macrophages ko ATF4 50.9511918034666  48.4115306709847  —2.53966113248191
GSE140990  NHK SiRNA KLF4 32.7457159077375  41.8536621191276  9.10794621139004
GSE56989 ﬁgcmrzghg;‘ga“ SiRNA HIF1A 42.2828501457769  44.9064838639297  2.62362471815279
GSE73550 ft?g%':fégﬁ's SiRNA ESR1 29.9029503299127  27.8938114659652  —2.00913886394748
GSE90982 HUVECs l‘jgfggd?é o KLF4 33.6684708599789  35.3380624939053  1.66959163392637
GSE106502  MCF10A l‘jgfggd?é e MYC 41.4889946189905  31.7056828632328  —9.78331175575767

Supplementary Table 4. Gene set enrichment results for the signaling cascade including the intermediate Gnai2
and master regulators Fos and Cebpb in bone marrow macrophages after parabiosis treatment.

Normalized . Set collection
geneSet EnrichmentScore FOR size userld origin
Spleen Atf4;Bsg;Cdk4;Cited2;Emd;Ga

_ pdh;Hmgb1;Hsp90aal;Hspa5;L  Cell type
i\ro;rnythroblast 1.89681927021782 0.0480488114910385 19 dha;Pgk1:Prdx3;Rbbp7:Sdhb;S  signature

geing 0d1;Stmn1;Topl;Tubalb;U2afl
Marrow I_Drecursor B 1.83316975080196 0.0468624210838524 6 Akrlal;Bsg;Fthl;Gapdh;ngb Qell type
Cell Ageing 1;Sdhb signature
nucleoside GO
monophosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgk1;Stat3 enrichment
metabolic process
purine nucleoside GO
monophosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgk1;Stat3 enrichment
metabolic process
nucleoside GO
triphosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgkl;Stat3 enrichment
metabolic process
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purine nucleoside

triphosphate 2.13758989447581  0.0084662592850568 5 Hifla:Hspas:Ldha;Pgkl;Stat3 Sncr’i chment
metabolic process
ribonucleoside GO
monophosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgkl;Stat3 enrichment
metabolic process
purine ribonucleoside GO
monophosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgk1;Stat3 enrichment
metabolic process
ribonucleoside GO
triphosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgk1;Stat3 enrichment
metabolic process
purine ribonucleoside GO
triphosphate —2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgkl;Stat3 enrichment
metabolic process
ATP metabolic A . ) . GO
process 2.13758989447581 0.0084662592850568 5 Hifla;Hspa8;Ldha;Pgkl;Stat3 enrichment
HALLMARK_OXID . . . .
ATIVE_PHOSPHOR  —1.95707927282095  0.021953896816685 6 ’;tspgﬁgl’co"”'D'St'tha'Prdx Hear!'e”;ﬁ';
YLATION : g
RS EARRE  174347968154799  0.0457183805087782 5 Nrld2;Nr4al;Nr4a2;Rora Wikipathways
regulation of . . . GO
chemotaxis 1.83367371500472 0.0328649544320262 9 Ccl4;Dusp1;111b;Vegfa enrichment
regulation of . . . GO
leukocyte chemotaxis 1.8567723688262 0.0242731163447965 8 Ccl4;Dusp1;111b;Vegfa enrichment
granulocyte migration  1.883399693367 0.0142310469350107 9 Ccl4;Cxcl2;111b;Vegfa Sn?i chment
granulocyte . e GO
chemotaxis 1.883399693367 0.0142310469350107 9 Ccl4;Cxcl2;111b;Vegfa enrichment
leukocyte migration 1.92899710894569 0.00678761916024705 11 Ccl4;Cxcl2;Dusp1;ll1b;Vegfa Sn?ichment
regulation of GO
signaling receptor 1.95289017271554 0.00430374403276534 8 Ccl4;Cxcl2;111b;0sm;Vegfa enrichment
activity
taxis 1.971841009153 0.00247895656287284 16  Coi4Cxcl2DuspLilllbiNrdal; - GO
Nr4a3;Vegfa enrichment
leukocyte chemotaxis ~ 1.98973358621909 0.0025822464196592 10 Ccl4;Cxcl2;Dusp1;ll1b;Vegfa Sn?ichmen t
myeloid leukocyte 1.98973358621909  0.0025822464196592 10 Cel4Cxcl2;DuspLiliib;Vegfa SO
migration enrichment
. Ccl4;Cxcl2;Dusp1;ll1b;Nr4al; GO
cell chemotaxis 1.99034656241804 0.00516449283931841 11 Vegfa enrichment
. Ccl4;Cxcl2;Dusp1;ll1b;Nr4al; GO
chemotaxis 2.00570057656868 0.00619739140718209 15 Nr4a3:Vegfa enrichment
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