[en] This paper provides a structured and practical roadmap for practitioners to integrate learning from demonstration (LfD) into manufacturing tasks, with a specific focus on industrial manipulators. Motivated by the paradigm shift from mass production to mass customization, it is crucial to have an easy-to-follow roadmap for practitioners with moderate expertise, to transform existing robotic processes to customizable LfD-based solutions. To realize this transformation, we devise the key questions of “What to Demonstrate”, “How to Demonstrate”, “How to Learn”, and “How to Refine”. To follow through these questions, our comprehensive guide offers a questionnaire-style approach, highlighting key steps from problem definition to solution refinement. This paper equips both researchers and industry professionals with actionable insights to deploy LfD-based solutions effectively. By tailoring the refinement criteria to manufacturing settings, this paper addresses related challenges and strategies for enhancing LfD performance in manufacturing contexts.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BAREKATAIN, Alireza ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
HABIBI, Hamed ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
VOOS, Holger ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A Practical Roadmap to Learning from Demonstration for Robotic Manipulators in Manufacturing
Date de publication/diffusion :
10 juillet 2024
Titre du périodique :
Robotics
ISSN :
2218-6581
Maison d'édition :
MDPI AG
Titre particulier du numéro :
Integrating Robotics into High-Accuracy Industrial Operations
FNR15882013 - A Combined Machine Learning Approach For The Engineering Of Flexible Assembly Processes Using Collaborative Robots, 2021 (01/04/2021-28/02/2025) - Alireza Barekatain
Organisme subsidiant :
Luxembourg National Research Fund
N° du Fonds :
15882013
Subventionnement (détails) :
This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), ML-COBOTS Project, ref. 15882013. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any author-accepted manuscript version arising from this submission.
Ravichandar H. Polydoros A.S. Chernova S. Billard A. Recent advances in robot learning from demonstration Annu. Rev. Control Robot. Auton. Syst. 2020 3 297 330 10.1146/annurev-control-100819-063206
Heimann O. Guhl J. Industrial robot programming methods: A scoping review Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Vienna, Austria 8–11 September 2020 IEEE Piscataway, NJ, USA 2020 Volume 1 696 703
Léger J. Angeles J. Off-line programming of six-axis robots for optimum five-dimensional tasks Mech. Mach. Theory 2016 100 155 169 10.1016/j.mechmachtheory.2016.01.015
Dean-Leon E. Ramirez-Amaro K. Bergner F. Dianov I. Lanillos P. Cheng G. Robotic technologies for fast deployment of industrial robot systems Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy 23–26 October 2016 IEEE Piscataway, NJ, USA 2016 6900 6907
Sanneman L. Fourie C. Shah J.A. The State of Industrial Robotics: Emerging Technologies, Challenges, and Key Research Directions Foundations Trends® in Robotics Hanover, MA, USA 2021 Volume 8 225 306
Fang B. Jia S. Guo D. Xu M. Wen S. Sun F. Survey of imitation learning for robotic manipulation Int. J. Intell. Robot. Appl. 2019 3 362 369 10.1007/s41315-019-00103-5
Liu Z. Liu Q. Xu W. Wang L. Zhou Z. Robot learning towards smart robotic manufacturing: A review Robot. Comput.-Integr. Manuf. 2022 77 102360 10.1016/j.rcim.2022.102360
Zhu Z. Hu H. Robot learning from demonstration in robotic assembly: A survey Robotics 2018 7 17 10.3390/robotics7020017
Sosa-Ceron A.D. Gonzalez-Hernandez H.G. Reyes-Avendaño J.A. Learning from Demonstrations in Human–Robot Collaborative Scenarios: A Survey Robotics 2022 11 126 10.3390/robotics11060126
Moreno V.H. Jansing S. Polikarpov M. Carmichael M.G. Deuse J. Obstacles and opportunities for learning from demonstration in practical industrial assembly: A systematic literature review Robot. Comput.-Integr. Manuf. 2024 86 102658 10.1016/j.rcim.2023.102658
Li W. Wang Y. Liang Y. Pham D.T. Learning from demonstration for autonomous generation of robotic trajectory: Status quo and forward-looking overview Adv. Eng. Inform. 2024 62 102625 10.1016/j.aei.2024.102625
Kroemer O. Niekum S. Konidaris G. A review of robot learning for manipulation: Challenges, representations, and algorithms J. Mach. Learn. Res. 2021 22 1395 1476
Celemin C. Pérez-Dattari R. Chisari E. Franzese G. de Souza Rosa L. Prakash R. Ajanović Z. Ferraz M. Valada A. Kober J. et al. Interactive Imitation Learning in Robotics: A Survey Foundations Trends® in Robotics Hanover, MA, USA 2022 Volume 10 1 197
Xie Z. Zhang Q. Jiang Z. Liu H. Robot learning from demonstration for path planning: A review Sci. China Technol. Sci. 2020 63 1325 1334 10.1007/s11431-020-1648-4
Beltran-Hernandez C.C. Petit D. Ramirez-Alpizar I.G. Harada K. Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum Learning Study arXiv 2022 2204.12844
Pedersen M.R. Nalpantidis L. Andersen R.S. Schou C. Bøgh S. Krüger V. Madsen O. Robot skills for manufacturing: From concept to industrial deployment Robot. Comput. Integr. Manuf. 2016 37 282 291 10.1016/j.rcim.2015.04.002
Cohen Y. Naseraldin H. Chaudhuri A. Pilati F. Assembly systems in Industry 4.0 era: A road map to understand Assembly 4.0 Int. J. Adv. Manuf. Technol. 2019 105 4037 4054 10.1007/s00170-019-04203-1
Wind J. Rangaswamy A. Customerization: The next revolution in mass customization J. Interact. Mark. 2001 15 13 32 10.1002/1520-6653(200124)15:1<13::AID-DIR1001>3.0.CO;2-#
Gašpar T. Deniša M. Radanovič P. Ridge B. Savarimuthu T.R. Kramberger A. Priggemeyer M. Roßmann J. Wörgötter F. Ivanovska T. et al. Smart hardware integration with advanced robot programming technologies for efficient reconfiguration of robot workcells Robot. Comput.-Integr. Manuf. 2020 66 101979 10.1016/j.rcim.2020.101979
Ekvall S. Kragic D. Robot learning from demonstration: A task-level planning approach Int. J. Adv. Robot. Syst. 2008 5 33 10.5772/5611
Origanti V.K. Eiband T. Lee D. Automatic parameterization of motion and force controlled robot skills Proceedings of the International Conference on Robot Intelligence Technology and Applications Daejeon, Republic of Korea 16–17 December 2021 Springer Berlin/Heidelberg, Germany 2021 66 78
Niekum S. Osentoski S. Konidaris G. Chitta S. Marthi B. Barto A.G. Learning grounded finite-state representations from unstructured demonstrations Int. J. Robot. Res. 2015 34 131 157 10.1177/0278364914554471
Steinmetz F. Nitsch V. Stulp F. Intuitive task-level programming by demonstration through semantic skill recognition IEEE Robot. Autom. Lett. 2019 4 3742 3749 10.1109/LRA.2019.2928782
Iovino M. Styrud J. Falco P. Smith C. A Framework for Learning Behavior Trees in Collaborative Robotic Applications Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) Auckland, New Zealand 26–30 August 2023 IEEE Piscataway, NJ, USA 2023 1 8
French K.D. Kim J.H. Du Y. Goeddel E.M. Zeng Z. Jenkins O.C. Super Intendo: Semantic Robot Programming from Multiple Demonstrations for taskable robots Robot. Auton. Syst. 2023 166 104397 10.1016/j.robot.2023.104397
Willibald C. Lee D. Multi-level task learning based on intention and constraint inference for autonomous robotic manipulation Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Kyoto, Japan 23–27 October 2022 IEEE Piscataway, NJ, USA 2022 7688 7695
Mayershofer L. Lehner P. Leidner D. Albu-Schaeffer A. Task-Level Programming by Demonstration for Mobile Robotic Manipulators through Human Demonstrations based on Semantic Skill Recognition Proceedings of the ISR Europe 2023; 56th International Symposium on Robotics Stuttgart, Germany 26–27 September 2023 VDE Frankfurt am Main, Germany 2023 22 29
Gugliermo S. Schaffernicht E. Koniaris C. Pecora F. Learning behavior trees from planning experts using decision tree and logic factorization IEEE Robot. Autom. Lett. 2023 8 3534 3541 10.1109/LRA.2023.3268598
Scherf L. Fröhlich K. Koert D. Learning Action Conditions for Automatic Behavior Tree Generation from Human Demonstrations Proceedings of the Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction Boulder, CO, USA 11–15 March 2024 950 954
Eiband T. Liebl J. Willibald C. Lee D. Online task segmentation by merging symbolic and data-driven skill recognition during kinesthetic teaching Robot. Auton. Syst. 2023 162 104367 10.1016/j.robot.2023.104367
Lin J.F.S. Karg M. Kulić D. Movement primitive segmentation for human motion modeling: A framework for analysis IEEE Trans. Hum.-Mach. Syst. 2016 46 325 339 10.1109/THMS.2015.2493536
Sørensen S.L.B. Savarimuthu T.R. Iturrate I. Robot Task Primitive Segmentation from Demonstrations Using Only Built-in Kinematic State and Force-Torque Sensor Data Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) Auckland, New Zealand 26–30 August 2023 IEEE Piscataway, NJ, USA 2023 1 7
Dreher C.R. Asfour T. Learning temporal task models from human bimanual demonstrations Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Kyoto, Japan 23–27 October 2022 IEEE Piscataway, NJ, USA 2022 7664 7671
Zhou F. De la Torre F. Hodgins J.K. Hierarchical aligned cluster analysis for temporal clustering of human motion IEEE Trans. Pattern Anal. Mach. Intell. 2012 35 582 596 10.1109/TPAMI.2012.137 22732658
Xiong C. Shukla N. Xiong W. Zhu S.C. Robot learning with a spatial, temporal, and causal and-or graph Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA) Stockholm, Sweden 16–21 May 2016 IEEE Piscataway, NJ, USA 2016 2144 2151
Carpio E. Clark-Turner M. Begum M. Learning sequential human-robot interaction tasks from demonstrations: The role of temporal reasoning Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) New Delhi, India 14–18 October 2019 IEEE Piscataway, NJ, USA 2019 1 8
Gustavsson O. Iovino M. Styrud J. Smith C. Combining context awareness and planning to learn behavior trees from demonstration Proceedings of the 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) Napoli, Italy 29 August–2 September 2022 IEEE Piscataway, NJ, USA 2022 1153 1160
Ewerton M. Maeda G. Kollegger G. Wiemeyer J. Peters J. Incremental imitation learning of context-dependent motor skills Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) Cancun, Mexico 15–17 November 2016 IEEE Piscataway, NJ, USA 2016 351 358
Pignat E. Calinon S. Bayesian Gaussian mixture model for robotic policy imitation IEEE Robot. Autom. Lett. 2019 4 4452 4458 10.1109/LRA.2019.2932610
Maeda G. Ewerton M. Osa T. Busch B. Peters J. Active incremental learning of robot movement primitives Proceedings of the Conference on Robot Learning, PMLR Mountain View, CA, USA 13–15 November 2017 37 46
Wang K. Fan Y. Sakuma I. Robot Grasp Planning: A Learning from Demonstration-Based Approach Sensors 2024 24 618 10.3390/s24020618 38257710
Mészáros A. Franzese G. Kober J. Learning to Pick at Non-Zero-Velocity From Interactive Demonstrations IEEE Robot. Autom. Lett. 2022 7 6052 6059 10.1109/LRA.2022.3165531
Koert D. Pajarinen J. Schotschneider A. Trick S. Rothkopf C. Peters J. Learning intention aware online adaptation of movement primitives IEEE Robot. Autom. Lett. 2019 4 3719 3726 10.1109/LRA.2019.2928760
Raiola G. Lamy X. Stulp F. Co-manipulation with multiple probabilistic virtual guides Proceedings of the 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) Hamburg, Germany 28 September–2 October 2015 IEEE Piscataway, NJ, USA 2015 7 13
Mohseni-Kabir A. Li C. Wu V. Miller D. Hylak B. Chernova S. Berenson D. Sidner C. Rich C. Simultaneous learning of hierarchy and primitives for complex robot tasks Auton. Robot. 2019 43 859 874 10.1007/s10514-018-9749-y
Bobu A. Peng A. Agrawal P. Shah J.A. Dragan A.D. Aligning Human and Robot Representations Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction Boulder, CO, USA 11–15 March 2024 42 54
Dong Z. Li Z. Yan Y. Calinon S. Chen F. Passive bimanual skills learning from demonstration with motion graph attention networks IEEE Robot. Autom. Lett. 2022 7 4917 4923 10.1109/LRA.2022.3152974
Liu D. Lu B. Cong M. Yu H. Zou Q. Du Y. Robotic manipulation skill acquisition via demonstration policy learning IEEE Trans. Cogn. Dev. Syst. 2021 14 1054 1065 10.1109/TCDS.2021.3094269
Mo Y. Sasaki H. Matsubara T. Yamazaki K. Multi-step motion learning by combining learning-from-demonstration and policy-search Adv. Robot. 2023 37 560 575 10.1080/01691864.2022.2163187
Frank F. Paraschos A. van der Smagt P. Cseke B. Constrained probabilistic movement primitives for robot trajectory adaptation IEEE Trans. Robot. 2021 38 2276 2294 10.1109/TRO.2021.3127108
Zhai D.H. Xia Z. Wu H. Xia Y. A motion planning method for robots based on DMPS and modified obstacle-avoiding algorithm IEEE Trans. Autom. Sci. Eng. 2022 20 2678 2688 10.1109/TASE.2022.3202351
Auddy S. Hollenstein J. Saveriano M. Rodríguez-Sánchez A. Piater J. Continual learning from demonstration of robotics skills Robot. Auton. Syst. 2023 165 104427 10.1016/j.robot.2023.104427
Ruan S. Liu W. Wang X. Meng X. Chirikjian G.S. PRIMP: PRobabilistically-Informed Motion Primitives for Efficient Affordance Learning from Demonstration IEEE Trans. Robot. 2024 40 2868 2887 10.1109/TRO.2024.3390052
Biagiotti L. Meattini R. Chiaravalli D. Palli G. Melchiorri C. Robot Programming by Demonstration: Trajectory Learning Enhanced by sEMG-Based User Hand Stiffness Estimation IEEE Trans. Robot. 2023 39 3259 3278 10.1109/TRO.2023.3258669
Vuong N. Pham H. Pham Q.C. Learning sequences of manipulation primitives for robotic assembly Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA) Xi’an, China 30 May–5 June 2021 IEEE Piscataway, NJ, USA 2021 4086 4092
Wu Z. Lian W. Wang C. Li M. Schaal S. Tomizuka M. Prim-lafd: A framework to learn and adapt primitive-based skills from demonstrations for insertion tasks IFAC-PapersOnLine 2023 56 4120 4125 10.1016/j.ifacol.2023.10.1748
Johannsmeier L. Gerchow M. Haddadin S. A framework for robot manipulation: Skill formalism, meta learning and adaptive control Proceedings of the 2019 International Conference on Robotics and Automation (ICRA) Montreal, QC, Canada 20–24 May 2019 IEEE Piscataway, NJ, USA 2019 5844 5850
Simonič M. Petrič T. Ude A. Nemec B. Analysis of methods for incremental policy refinement by kinesthetic guidance J. Intell. Robot. Syst. 2021 102 5 10.1007/s10846-021-01328-y
Wu Z. Lian W. Unhelkar V. Tomizuka M. Schaal S. Learning dense rewards for contact-rich manipulation tasks Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA) Xi’an, China 30 May–5 June 2021 IEEE Piscataway, NJ, USA 2021 6214 6221
Lee M.A. Zhu Y. Srinivasan K. Shah P. Savarese S. Fei-Fei L. Garg A. Bohg J. Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks Proceedings of the 2019 International Conference on Robotics and Automation (ICRA) Montreal, QC, Canada 20–24 May 2019 IEEE Piscataway, NJ, USA 2019 8943 8950
Davchev T. Luck K.S. Burke M. Meier F. Schaal S. Ramamoorthy S. Residual learning from demonstration: Adapting dmps for contact-rich manipulation IEEE Robot. Autom. Lett. 2022 7 4488 4495 10.1109/LRA.2022.3150024
Vecerik M. Hester T. Scholz J. Wang F. Pietquin O. Piot B. Heess N. Rothörl T. Lampe T. Riedmiller M. Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards arXiv 2017 1707.08817
Vidaković J. Jerbić B. Šekoranja B. Švaco M. Šuligoj F. Accelerating robot trajectory learning for stochastic tasks IEEE Access 2020 8 71993 72006 10.1109/ACCESS.2020.2986999
Perico C.A.V. De Schutter J. Aertbeliën E. Combining imitation learning with constraint-based task specification and control IEEE Robot. Autom. Lett. 2019 4 1892 1899 10.1109/LRA.2019.2898035
Roveda L. Magni M. Cantoni M. Piga D. Bucca G. Assembly task learning and optimization through human’s demonstration and machine learning Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) Toronto, ON, Canada 11–14 October 2020 IEEE Piscataway, NJ, USA 2020 1852 1859
Si W. Guan Y. Wang N. Adaptive compliant skill learning for contact-rich manipulation with human in the loop IEEE Robot. Autom. Lett. 2022 7 5834 5841 10.1109/LRA.2022.3159163
Wang W. Loh R.N. Gu E.Y. Passive compliance versus active compliance in robot-based automated assembly systems Ind. Robot. Int. J. 1998 25 48 57 10.1108/01439919810196964
Song P. Yu Y. Zhang X. A tutorial survey and comparison of impedance control on robotic manipulation Robotica 2019 37 801 836 10.1017/S0263574718001339
Hogan N. Impedance control of industrial robots Robot. Comput.-Integr. Manuf. 1984 1 97 113 10.1016/0736-5845(84)90084-X
Nemec B. Žlajpah L. Šlajpa S. Piškur J. Ude A. An efficient pbd framework for fast deployment of bi-manual assembly tasks Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids) Beijing, China 6–9 November 2018 IEEE Piscataway, NJ, USA 2018 166 173
Hu H. Yang X. Lou Y. A robot learning from demonstration framework for skillful small parts assembly Int. J. Adv. Manuf. Technol. 2022 119 6775 6787 10.1007/s00170-022-08652-z
Seo J. Prakash N.P. Zhang X. Wang C. Choi J. Tomizuka M. Horowitz R. Contact-rich SE (3)-Equivariant Robot Manipulation Task Learning via Geometric Impedance Control IEEE Robot. Autom. Lett. 2023 9 1508 1515 10.1109/LRA.2023.3346748
Kastritsi T. Dimeas F. Doulgeri Z. Progressive automation with dmp synchronization and variable stiffness control IEEE Robot. Autom. Lett. 2018 3 3789 3796 10.1109/LRA.2018.2856536
Yang S. Gao X. Feng Z. Xiao X. Learning Pose Dynamical System for Contact Tasks under Human Interaction Actuators 2023 12 179 10.3390/act12040179
Wang W. Li R. Chen Y. Diekel Z.M. Jia Y. Facilitating human–robot collaborative tasks by teaching-learning-collaboration from human demonstrations IEEE Trans. Autom. Sci. Eng. 2018 16 640 653 10.1109/TASE.2018.2840345
Nemec B. Likar N. Gams A. Ude A. Human robot cooperation with compliance adaptation along the motion trajectory Auton. Robot. 2018 42 1023 1035 10.1007/s10514-017-9676-3
Eiband T. Willibald C. Tannert I. Weber B. Lee D. Collaborative programming of robotic task decisions and recovery behaviors Auton. Robot. 2023 47 229 247 10.1007/s10514-022-10062-9
Rozo L. Calinon S. Caldwell D.G. Jimenez P. Torras C. Learning physical collaborative robot behaviors from human demonstrations IEEE Trans. Robot. 2016 32 513 527 10.1109/TRO.2016.2540623
Jha D.K. Jain S. Romeres D. Yerazunis W. Nikovski D. Generalizable human-robot collaborative assembly using imitation learning and force control Proceedings of the 2023 European Control Conference (ECC) Bucharest, Romania 13–16 June 2023 IEEE Piscataway, NJ, USA 2023 1 8
Khoramshahi M. Billard A. A dynamical system approach to task-adaptation in physical human–robot interaction Auton. Robot. 2019 43 927 946 10.1007/s10514-018-9764-z
Jahanmahin R. Masoud S. Rickli J. Djuric A. Human-robot interactions in manufacturing: A survey of human behavior modeling Robot. Comput.-Integr. Manuf. 2022 78 102404 10.1016/j.rcim.2022.102404
Xing X. Maqsood K. Zeng C. Yang C. Yuan S. Li Y. Dynamic Motion Primitives-based Trajectory Learning for Physical Human-Robot Interaction Force Control IEEE Trans. Ind. Inform. 2023 20 1675 1686 10.1109/TII.2023.3280320
Franzese G. de Souza Rosa L. Verburg T. Peternel L. Kober J. Interactive imitation learning of bimanual movement primitives IEEE/ASME Trans. Mechatron. 2023 early access 10.1109/TMECH.2023.3295249
Krebs F. Meixner A. Patzer I. Asfour T. The kit bimanual manipulation dataset Proceedings of the 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids) Munich, Germany 19–21 July 2021 IEEE Piscataway, NJ, USA 2021 499 506
Stepputtis S. Bandari M. Schaal S. Amor H.B. A system for imitation learning of contact-rich bimanual manipulation policies Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Kyoto, Japan 23–27 October 2022 IEEE Piscataway, NJ, USA 2022 11810 11817
Liu J. Sim H. Li C. Tan K.C. Chen F. Birp: Learning robot generalized bimanual coordination using relative parameterization method on human demonstration Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC) Singapore 13–15 December 2023 IEEE Piscataway, NJ, USA 2023 8300 8305
Mao X. Xu Y. Wen R. Kasaei M. Yu W. Psomopoulou E. Lepora N.F. Li Z. Learning fine pinch-grasp skills using tactile sensing from real demonstration data arXiv 2023 2307.04619
Jaquier N. Ginsbourger D. Calinon S. Learning from demonstration with model-based Gaussian process Proceedings of the Conference on Robot Learning, PMLR Virtual 16–18 November 2020 247 257
Arduengo M. Colomé A. Lobo-Prat J. Sentis L. Torras C. Gaussian-process-based robot learning from demonstration J. Ambient. Intell. Humaniz. Comput. 2023 1 14 10.1007/s12652-023-04551-7
Ding G. Liu Y. Zang X. Zhang X. Liu G. Zhao J. A task-learning strategy for robotic assembly tasks from human demonstrations Sensors 2020 20 5505 10.3390/s20195505 32992888
Kulak T. Girgin H. Odobez J.M. Calinon S. Active learning of Bayesian probabilistic movement primitives IEEE Robot. Autom. Lett. 2021 6 2163 2170 10.1109/LRA.2021.3060414
Prados A. Garrido S. Barber R. Learning and generalization of task-parameterized skills through few human demonstrations Eng. Appl. Artif. Intell. 2024 133 108310 10.1016/j.engappai.2024.108310
Zappa I. Fracassi G. Zanchettin A.M. Rocco P. Parameterization of Robotic Welding Trajectories from Demonstration Proceedings of the 2023 11th International Conference on Control, Mechatronics and Automation (ICCMA) Grimstad, Norway 1–3 November 2023 IEEE Piscataway, NJ, USA 2023 146 151
Cui Z. Ma W. Lai J. Chu H.K. Guo Y. Coupled multiple dynamic movement primitives generalization for deformable object manipulation IEEE Robot. Autom. Lett. 2022 7 5381 5388 10.1109/LRA.2022.3156656
Li X. Brock O. Learning from demonstration based on environmental constraints IEEE Robot. Autom. Lett. 2022 7 10938 10945 10.1109/LRA.2022.3196096
Johns E. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration Proceedings of the 2021 IEEE international conference on robotics and automation (ICRA) Xi’an, China 30 May–5 June 2021 IEEE Piscataway, NJ, USA 2021 4613 4619
Shi Y. Chen Z. Wu Y. Henkel D. Riedel S. Liu H. Feng Q. Zhang J. Combining learning from demonstration with learning by exploration to facilitate contact-rich tasks Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Prague, Czech Republic 27 September–October 2021 IEEE Piscataway, NJ, USA 2021 1062 1069
Wohlgemuth F. Mizutani I. Eichelberger L. Mayer S. Electromyography-based Kinesthetic Teaching of Industrial Collaborative Robots Proceedings of the Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction Boulder, CO, USA 11–15 March 2024 1124 1128
Prados A. Mora A. López B. Muñoz J. Garrido S. Barber R. Kinesthetic learning based on fast marching square method for manipulation Appl. Sci. 2023 13 2028 10.3390/app13042028
Barekatain A. Habibi H. Voos H. DFL-TORO: A One-Shot Demonstration Framework for Learning Time-Optimal Robotic Manufacturing Tasks arXiv 2023 2309.09802
Si W. Wang N. Yang C. A review on manipulation skill acquisition through teleoperation-based learning from demonstration Cogn. Comput. Syst. 2021 3 1 16 10.1049/ccs2.12005
Rigter M. Lacerda B. Hawes N. A framework for learning from demonstration with minimal human effort IEEE Robot. Autom. Lett. 2020 5 2023 2030 10.1109/LRA.2020.2970619
Tung A. Wong J. Mandlekar A. Martín-Martín R. Zhu Y. Fei-Fei L. Savarese S. Learning multi-arm manipulation through collaborative teleoperation Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA) Xi’an, China 30 May–5 June 2021 IEEE Piscataway, NJ, USA 2021 9212 9219
Luo J. Liu W. Qi W. Hu J. Chen J. Yang C. A vision-based virtual fixture with robot learning for teleoperation Robot. Auton. Syst. 2023 164 104414 10.1016/j.robot.2023.104414
Güleçyüz B. von Büren V. Xu X. Steinbach E. NetLfD: Network-Aware Learning from Demonstration for In-Contact Skills via Teleoperation IEEE Robot. Autom. Lett. 2023 8 6995 7002 10.1109/LRA.2023.3313494
Franzese G. Mészáros A. Peternel L. Kober J. ILoSA: Interactive learning of stiffness and attractors Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Prague, Czech Republic 27 September–1 October 2021 IEEE Piscataway, NJ, USA 2021 7778 7785
Yin C. Zhang Q. A multi-modal framework for robots to learn manipulation tasks from human demonstrations J. Intell. Robot. Syst. 2023 107 56 10.1007/s10846-023-01856-9
Zhu X. Ke J. Xu Z. Sun Z. Bai B. Lv J. Liu Q. Zeng Y. Ye Q. Lu C. et al. Diff-lfd: Contact-aware model-based learning from visual demonstration for robotic manipulation via differentiable physics-based simulation and rendering Proceedings of the Conference on Robot Learning, PMLR Atlanta, GA, USA 6–9 November 2023 499 512
Yang S. Zhang W. Song R. Cheng J. Wang H. Li Y. Watch and act: Learning robotic manipulation from visual demonstration IEEE Trans. Syst. Man Cybern. Syst. 2023 53 4404 4416 10.1109/TSMC.2023.3248324
Xu X. You M. Zhou H. Qian Z. He B. Robot imitation learning from image-only observation without real-world interaction IEEE/ASME Trans. Mechatron. 2022 28 1234 1244 10.1109/TMECH.2022.3217048
Bıyık E. Huynh N. Kochenderfer M.J. Sadigh D. Active preference-based Gaussian process regression for reward learning and optimization Int. J. Robot. Res. 2024 43 665 684 10.1177/02783649231208729
Celemin C. Ruiz-del Solar J. An interactive framework for learning continuous actions policies based on corrective feedback J. Intell. Robot. Syst. 2019 95 77 97 10.1007/s10846-018-0839-z
Pastor P. Hoffmann H. Asfour T. Schaal S. Learning and generalization of motor skills by learning from demonstration Proceedings of the 2009 IEEE International Conference on Robotics and Automation Kobe, Japan 12–17 May 2009 IEEE Piscataway, NJ, USA 2009 763 768
Tavassoli M. Katyara S. Pozzi M. Deshpande N. Caldwell D.G. Prattichizzo D. Learning skills from demonstrations: A trend from motion primitives to experience abstraction IEEE Trans. Cogn. Dev. Syst. 2024 16 57 74 10.1109/TCDS.2023.3296166
Chisari E. Welschehold T. Boedecker J. Burgard W. Valada A. Correct me if i am wrong: Interactive learning for robotic manipulation IEEE Robot. Autom. Lett. 2022 7 3695 3702 10.1109/LRA.2022.3145516
Yin H. Melo F.S. Paiva A. Billard A. An ensemble inverse optimal control approach for robotic task learning and adaptation Auton. Robot. 2019 43 875 896 10.1007/s10514-018-9757-y
Zhou Y. Gao J. Asfour T. Movement primitive learning and generalization: Using mixture density networks IEEE Robot. Autom. Mag. 2020 27 22 32 10.1109/MRA.2020.2980591
Ijspeert A.J. Nakanishi J. Hoffmann H. Pastor P. Schaal S. Dynamical movement primitives: Learning attractor models for motor behaviors Neural Comput. 2013 25 328 373 10.1162/NECO_a_00393
Saveriano M. Abu-Dakka F.J. Kramberger A. Peternel L. Dynamic movement primitives in robotics: A tutorial survey Int. J. Robot. Res. 2023 42 1133 1184 10.1177/02783649231201196
Nemec B. Gams A. Ude A. Velocity adaptation for self-improvement of skills learned from user demonstrations Proceedings of the 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) Atlanta, GA, USA 15–17 October 2013 IEEE Piscataway, NJ, USA 2013 423 428
Shaw S. Jha D.K. Raghunathan A. Corcodel R. Romeres D. Konidaris G. Nikovski D. Constrained dynamic movement primitives for safe learning of motor skills arXiv 2022 2209.14461
Sidiropoulos A. Papageorgiou D. Doulgeri Z. A novel framework for generalizing dynamic movement primitives under kinematic constraints Auton. Robot. 2023 47 37 50 10.1007/s10514-022-10067-4
Sidiropoulos A. Doulgeri Z. A reversible dynamic movement primitive formulation Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA) Xi’an, China 30 May–5 June 2021 IEEE Piscataway, NJ, USA 2021 3147 3153
Abu-Dakka F.J. Saveriano M. Kyrki V. A Unified Formulation of Geometry-aware Dynamic Movement Primitives arXiv 2022 2203.03374 10.1016/j.neucom.2024.128056
Saveriano M. Franzel F. Lee D. Merging position and orientation motion primitives Proceedings of the 2019 International Conference on Robotics and Automation (ICRA) Montreal, QC, Canada 20–24 May 2019 IEEE Piscataway, NJ, USA 2019 7041 7047
Han L. Yuan H. Xu W. Huang Y. Modified dynamic movement primitives: Robot trajectory planning and force control under curved surface constraints IEEE Trans. Cybern. 2022 53 4245 4258 10.1109/TCYB.2022.3158029
Chang C. Haninger K. Shi Y. Yuan C. Chen Z. Zhang J. Impedance adaptation by reinforcement learning with contact dynamic movement primitives Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) Sapporo, Japan 11–15 July 2022 IEEE Piscataway, NJ, USA 2022 1185 1191
Liao Z. Jiang G. Zhao F. Wu Y. Yue Y. Mei X. Dynamic skill learning from human demonstration based on the human arm stiffness estimation model and Riemannian DMP IEEE/ASME Trans. Mechatron. 2022 28 1149 1160 10.1109/TMECH.2022.3212707
Ugur E. Girgin H. Compliant parametric dynamic movement primitives Robotica 2020 38 457 474 10.1017/S026357471900078X
Sidiropoulos A. Doulgeri Z. Dynamic via-points and improved spatial generalization for online trajectory planning with Dynamic Movement Primitives arXiv 2022 2212.13473
Cleveland W.S. Devlin S.J. Locally weighted regression: An approach to regression analysis by local fitting J. Am. Stat. Assoc. 1988 83 596 610 10.1080/01621459.1988.10478639
Peters J. Mülling K. Kober J. Nguyen-Tuong D. Krömer O. Towards motor skill learning for robotics Proceedings of the Robotics Research: The 14th International Symposium ISRR Lucerne, Switzerland 31 August–3 September 2009 Springer Berlin/Heidelberg, Germany 2011 469 482
Tsai Y.Y. Xiao B. Johns E. Yang G.Z. Constrained-space optimization and reinforcement learning for complex tasks IEEE Robot. Autom. Lett. 2020 5 683 690 10.1109/LRA.2020.2965392
Wang K. Zhao Y. Sakuma I. Learning robotic insertion tasks from human demonstration IEEE Robot. Autom. Lett. 2023 8 5815 5822 10.1109/LRA.2023.3300238
Ma Y. Xu D. Qin F. Efficient insertion control for precision assembly based on demonstration learning and reinforcement learning IEEE Trans. Ind. Inform. 2020 17 4492 4502 10.1109/TII.2020.3020065
Das N. Bechtle S. Davchev T. Jayaraman D. Rai A. Meier F. Model-based inverse reinforcement learning from visual demonstrations Proceedings of the Conference on Robot Learning, PMLR London, UK 8–11 November 2021 1930 1942
Alakuijala M. Dulac-Arnold G. Mairal J. Ponce J. Schmid C. Learning reward functions for robotic manipulation by observing humans Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA) London, UK 29 May–2 June 2023 IEEE Piscataway, NJ, USA 2023 5006 5012
Trinh T. Chen H. Brown D.S. Autonomous assessment of demonstration sufficiency via bayesian inverse reinforcement learning Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction Boulder, CO, USA 11–15 March 2024 725 733
Escontrela A. Adeniji A. Yan W. Jain A. Peng X.B. Goldberg K. Lee Y. Hafner D. Abbeel P. Video prediction models as rewards for reinforcement learning Proceedings of the Advances in Neural Information Processing Systems Curran Associates Inc. Red Hook, NY, USA 2024 Volume 36
Zhu J. Gienger M. Kober J. Learning task-parameterized skills from few demonstrations IEEE Robot. Autom. Lett. 2022 7 4063 4070 10.1109/LRA.2022.3150013
Paraschos A. Daniel C. Peters J.R. Neumann G. Probabilistic movement primitives Proceedings of the Advances in Neural Information Processing Systems Llake Tahoe, NV, USA 5–10 December 2013 Volume 26
Yue C. Gao T. Lu L. Lin T. Wu Y. Probabilistic movement primitives based multi-task learning framework Comput. Ind. Eng. 2024 191 110144 10.1016/j.cie.2024.110144
Yang Y. Chen L. Zaidi Z. van Waveren S. Krishna A. Gombolay M. Enhancing Safety in Learning from Demonstration Algorithms via Control Barrier Function Shielding Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction Boulder, CO, USA 11–15 March 2024 820 829
Wang J. Wu Z. Li Y. Jiang H. Shu P. Shi E. Hu H. Ma C. Liu Y. Wang X. et al. Large language models for robotics: Opportunities, challenges, and perspectives arXiv 2024 2401.04334
Zhang C. Wang Z. Zhou G. Chang F. Ma D. Jing Y. Cheng W. Ding K. Zhao D. Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review Adv. Eng. Inform. 2023 57 102121 10.1016/j.aei.2023.102121
Lou S. Hu Z. Zhang Y. Feng Y. Zhou M. Lv C. Human-Cyber-Physical System for Industry 5.0: A Review From a Human-Centric Perspective IEEE Trans. Autom. Sci. Eng. 2024 1 18 10.1109/TASE.2024.3360476
Liu Y. Zhang W. Pan S. Li Y. Chen Y. Analyzing the robotic behavior in a smart city with deep enforcement and imitation learning using IoRT Comput. Commun. 2020 150 346 356 10.1016/j.comcom.2019.11.031
Romeo L. Petitti A. Marani R. Milella A. Internet of robotic things in smart domains: Applications and challenges Sensors 2020 20 3355 10.3390/s20123355
Groshev M. Baldoni G. Cominardi L. de la Oliva A. Gazda R. Edge robotics: Are we ready? An experimental evaluation of current vision and future directions Digit. Commun. Netw. 2023 9 166 174 10.1016/j.dcan.2022.04.032
Liu C. Tang D. Zhu H. Nie Q. Chen W. Zhao Z. An augmented reality-assisted interaction approach using deep reinforcement learning and cloud-edge orchestration for user-friendly robot teaching Robot. Comput.-Integr. Manuf. 2024 85 102638 10.1016/j.rcim.2023.102638
Wang X.V. Wang L. Augmented reality enabled human–robot collaboration Advanced Human-Robot Collaboration in Manufacturing Springer Berlin/Heidelberg, Germany 2021 395 411
Hamon L. Virtual reality and programming by demonstration: Teaching a robot to grasp a dynamic object by the generalization of human demonstrations Presence 2011 20 241 253 10.1162/PRES_a_00047
Dyrstad J.S. Mathiassen J.R. Grasping virtual fish: A step towards robotic deep learning from demonstration in virtual reality Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) Macau, Macao 5–8 December 2017 IEEE Piscataway, NJ, USA 2017 1181 1187