[en] Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Green, Alanna C ; Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
Marttila, Petra ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Kiweler, Nicole ; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Chalkiadaki, Christina; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Wiita, Elisée; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Cookson, Victoria; Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
Lesur, Antoine; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Eiden, Kim; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Bernardin, François ; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Vallin, Karl S A; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden ; RISE Research Institutes of Sweden, Södertälje, Sweden
Borhade, Sanjay; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden ; RedGlead Discover, Lund, Sweden
Long, Maeve; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Ghahe, Elahe Kamali; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
Jiménez-Alonso, Julio J; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden ; Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
Jemth, Ann-Sofie ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Loseva, Olga; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Mortusewicz, Oliver ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
MEYERS, Marianne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
VIRY, Elodie ; Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Johansson, Annika I ; Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
Hodek, Ondřej ; Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
Homan, Evert; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Bonagas, Nadilly ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
Ramos, Louise ; Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
Sandberg, Lars; Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
Frödin, Morten; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
MOUSSAY, Etienne ; Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Slipicevic, Ana; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden ; One-carbon Therapeutics AB, Stockholm, Sweden
LETELLIER, Elisabeth ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
PAGGETTI, Jerome ; Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
Sørensen, Claus Storgaard; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
Helleday, Thomas ; Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK. thomas.helleday@scilifelab.se ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden. thomas.helleday@scilifelab.se
Henriksson, Martin ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden. martin.henriksson@scilifelab.se
MEISER, Johannes ; Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg. Johannes.Meiser@lih.lu
Weston Park Cancer Centre and the University of Sheffield Helleday Foundation Deutsche Forschungsgemeinschaft Fonds National de la Recherche Luxembourg Ministerio de Universidades of the Spanish Government Karolinska Institute’s KID funding for doctoral students One-Carbon Therapeutics AB Novo Nordisk Fonden Cancerfonden Barncancerfonden Vetenskapsrådet VINNOVA Weston Park Cancer Centre and the University of Sheffield Torsten and Ragnar Söderberg Foundation
Funding text :
We thank the members of the Helleday laboratory for fruitful discussions. We also thank M. Benzarti from the Cancer Metabolism Group at the Luxembourg Institute of Health and F. Rodriguez from the Molecular Disease Mechanisms Group at University of Luxembourg for their technical assistance and C. Jäger from the LCSB Metabolomics Platform at University of Luxembourg for providing technical and analytical support. This project is supported by the Weston Park Cancer Centre and the University of Sheffield (A.C.G. and T.H.), a DFG fellowship (no. KI 2508/1-1, N.K.), the Mobility programme for the FPU predoctoral fellowship from Ministerio de Universidades of the Spanish Government (grant no. FPU17/02185, J.J.J.-A.), the Helleday Foundation (P.M., C.C., S.B. and M.L.), Karolinska Institute’s KID funding for doctoral students (N.B.), the Novo Nordisk Foundation (grant no. 17OC0029972, T.H.), the Swedish Cancer Society (grant nos. 2018/600, 2021/1490, T.H.), the Swedish Children’s Cancer Foundation (grant nos. 2018-0095, 2021-0030, T.H.), the Swedish Research Council (grant nos. 2015-00162, 2017-06095, T.H.), Vinnova (grant nos. 2018-00257, 2021-04817, T.H.), Torsten and Ragnar Söderberg Foundation (T.H.), the Luxembourg National Research Fund (FNR) and Fondation Cancer (grant nos. C20/BM/14582635, E.M. and C20/BM/14592342, J.P.), the FNRS-Télévie (grant nos. 7.4509.20 and 7.4572.22, E.V.), the FNR-ATTRACT programme (A18/BM/11809970, J.M.), a FNR-CORE grant (no. C21/BM/15718879, J.M.) and the FNR-PRIDE i2Tron (grant no. PRIDE19/14254520, K.E.) programme.We thank the members of the Helleday laboratory for fruitful discussions. We also thank M. Benzarti from the Cancer Metabolism Group at the Luxembourg Institute of Health and F. Rodriguez from the Molecular Disease Mechanisms Group at University of Luxembourg for their technical assistance and C. Jäger from the LCSB Metabolomics Platform at University of Luxembourg for providing technical and analytical support. This project is supported by the Weston Park Cancer Centre and the University of Sheffield (A.C.G. and T.H.), a DFG fellowship (no. KI 2508/1-1, N.K.), the Mobility programme for the FPU predoctoral fellowship from Ministerio de Universidades of the Spanish Government (grant no. FPU17/02185, J.J.J.-A.), the Helleday Foundation (P.M., C.C., S.B. and M.L.), Karolinska Institute’s KID funding for doctoral students (N.B.), the Novo Nordisk Foundation (grant no. 17OC0029972, T.H.), the Swedish Cancer Society (grant nos. 2018/600, 2021/1490, T.H.), the Swedish Children’s Cancer Foundation (grant nos. 2018-0095, 2021-0030, T.H.), the Swedish Research Council (grant nos. 2015-00162, 2017-06095, T.H.), Vinnova (grant nos. 2018-00257, 2021-04817, T.H.), Torsten and Ragnar Söderberg Foundation (T.H.), the Luxembourg National Research Fund (FNR) and Fondation Cancer (grant nos. C20/BM/14582635, E.M. and C20/BM/14592342, J.P.), the FNRS-Télévie (grant nos. 7.4509.20 and 7.4572.22, E.V.), the FNR-ATTRACT programme (A18/BM/11809970, J.M.), a FNR-CORE grant (no. C21/BM/15718879, J.M.) and the FNR-PRIDE i2Tron (grant no. PRIDE19/14254520, K.E.) programme.
Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011). DOI: 10.1016/j.cell.2011.03.044
Helleday, T. & Rudd, S. G. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol. Oncol. 16, 3792–3810 (2022). DOI: 10.1002/1878-0261.13227
Henriksson, S., Groth, P., Gustafsson, N. & Helleday, T. Distinct mechanistic responses to replication fork stalling induced by either nucleotide or protein deprivation. Cell Cycle 17, 568–579 (2018). DOI: 10.1080/15384101.2017.1387696
Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013). DOI: 10.1038/nrc3557
Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016). DOI: 10.1038/nrc.2016.81
Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128–3128 (2014). DOI: 10.1038/ncomms4128
Newman, A. C. & Maddocks, O. D. K. Serine and functional metabolites in cancer. Trends Cell Biol. 27, 645–657 (2017). DOI: 10.1016/j.tcb.2017.05.001
Tibbetts, A. S. & Appling, D. R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57–81 (2010). DOI: 10.1146/annurev.nutr.012809.104810
Lee, W. D. et al. Tumor reliance on cytosolic versus mitochondrial one-carbon flux depends on folate availability. Cell Metab. 33, 190–198.e196 (2021). DOI: 10.1016/j.cmet.2020.12.002
Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017). DOI: 10.1016/j.cmet.2016.08.009
Meiser, J. & Vazquez, A. Give it or take it: the flux of one-carbon in cancer cells. FEBS J. 283, 3695–3704 (2016). DOI: 10.1111/febs.13731
Pietzke, M., Meiser, J. & Vazquez, A. Formate metabolism in health and disease. Mol. Metab. 33, 23–37 (2019). DOI: 10.1016/j.molmet.2019.05.012
Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 1140–1153 (2016). DOI: 10.1016/j.cmet.2016.04.016
Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012). DOI: 10.1126/science.1218595
Dekhne, A. S., Hou, Z., Gangjee, A. & Matherly, L. H. Therapeutic targeting of mitochondrial one-carbon metabolism in cancer. Mol. Cancer Ther. 19, 2245–2255 (2020). DOI: 10.1158/1535-7163.MCT-20-0423
Bonagas, N. et al. Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nat. Cancer 3, 156–172 (2022). DOI: 10.1038/s43018-022-00331-y
Pikman, Y. et al. Targeting MTHFD2 in acute myeloid leukemia. Blood 126, 443–443 (2015). DOI: 10.1182/blood.V126.23.443.443
Kawai, J. et al. Discovery of a potent, selective, and orally available MTHFD2 inhibitor (DS18561882) with in vivo antitumor activity. J. Med. Chem. 62, 10204–10220 (2019). DOI: 10.1021/acs.jmedchem.9b01113
Ju, H. Q. et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Natl Cancer Inst. 111, 584–596 (2019). DOI: 10.1093/jnci/djy160
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 e516 (2017). DOI: 10.1016/j.cell.2017.06.010
Ducker, G. S. et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl Acad. Sci USA 114, 11404–11409 (2017). DOI: 10.1073/pnas.1706617114
Meiser, J. et al. Increased formate overflow is a hallmark of oxidative cancer. Nat. Commun. 9, 1368 (2018). DOI: 10.1038/s41467-018-03777-w
Meiser, J. et al. Serine one-carbon catabolism with formate overflow. Sci. Adv. 2, e1601273 (2016). DOI: 10.1126/sciadv.1601273
Kiweler, N. et al. Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nat. Commun. 13, 2699 (2022). DOI: 10.1038/s41467-022-30363-y
Gustafsson Sheppard, N. et al. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci. Rep. 5, 15029 (2015). DOI: 10.1038/srep15029
Huang, L., Wang, D. & Zhang, C. Drug affinity responsive target stability (DARTS) assay to detect interaction between a purified protein and a small molecule. Methods Mol. Biol. 2213, 175–182 (2021). DOI: 10.1007/978-1-0716-0954-5_15
Niu, Y. et al. Multiparametric and accurate functional analysis of genetic sequence variants using CRISPR-Select. Nat. Genet. 54, 1983–1993 (2022). DOI: 10.1038/s41588-022-01224-7
Li, G., Wu, J., Li, L. & Jiang, P. p53 deficiency induces MTHFD2 transcription to promote cell proliferation and restrain DNA damage. Proc. Natl Acad. Sci. USA 118, e2019822118 (2021). DOI: 10.1073/pnas.2019822118
Herbig, K. et al. Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J. Biol. Chem. 277, 38381–38389 (2002). DOI: 10.1074/jbc.M205000200
Lewis, C. A. et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014). DOI: 10.1016/j.molcel.2014.05.008
Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019). DOI: 10.1126/sciadv.aau7314
Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 e217 (2017). DOI: 10.1016/j.cell.2017.03.023
Henderson, J. F. & Khoo, K. Y. On the mechanism of feedback inhibition of purine biosynthesis de novo in ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240, 3104–3109 (1965). DOI: 10.1016/S0021-9258(18)97293-5
An, S., Kumar, R., Sheets, E. D. & Benkovic, S. J. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320, 103–106 (2008). DOI: 10.1126/science.1152241
Hennequart, M. et al. The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nat. Commun. 12, 6176 (2021). DOI: 10.1038/s41467-021-26395-5
Scaletti, E. et al. The first structure of human MTHFD2L and its implications for the development of isoform-selective inhibitors. Chem. Med. Chem. 17, e202200274 (2022).
Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009). DOI: 10.1038/msb.2009.80
Leamon, C. P. et al. Impact of high and low folate diets on tissue folate receptor levels and antitumor responses toward folate-drug conjugates. J. Pharmacol. Exp. Ther. 327, 918–925 (2008). DOI: 10.1124/jpet.108.143206
Nilsson, R., Nicolaidou, V. & Koufaris, C. Mitochondrial MTHFD isozymes display distinct expression, regulation, and association with cancer. Gene 716, 144032 (2019). DOI: 10.1016/j.gene.2019.144032
Bonagas, N. et al. Supplementary methods for ‘Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress’. Protocol Exchange https://doi.org/10.21203/rs.3.pex-1730/v1 (2022).
Adams, K. J. et al. Skyline for small molecules: a unifying software package for quantitative metabolomics. J. Proteome Res. 19, 1447–1458 (2020).
Schittmayer, M., Birner-Gruenberger, R. & Zamboni, N. Quantification of cellular folate species by LC-MS after stabilization by derivatization. Anal. Chem. 90, 7349–7356 (2018). DOI: 10.1021/acs.analchem.8b00650
Chen, L., Ducker, G. S., Lu, W., Teng, X. & Rabinowitz, J. D. An LC-MS chemical derivatization method for the measurement of five different one-carbon states of cellular tetrahydrofolate. Anal. Bioanal. Chem. 409, 5955–5964 (2017). DOI: 10.1007/s00216-017-0514-4