numerical cognition; priming distance effect; bilingualism; language of mathematical learning; Developmental Neuroscience; General Psychology; Experimental and Cognitive Psychology
Résumé :
[en] Bilinguals' exact number representations result from associations between language-independent Indo-Arabic digits ("5"), two verbal codes ("fünf" and "cinq") and a common, largely overlapping semantic representation. To compare the lexical and semantic access to number representations between two languages, we recruited a sample of balanced highly proficient German-French adult bilinguals. At school, those bilinguals learned mathematics in German for 6 years (LM1) and then switched to French (LM2) in 7th grade (12 years old) until 13th grade. After the brief presentation of primes (51 ms) consisting of Indo-Arabic digits or number words in German or French, an Indo-Arabic digits target had to be read in either German or French in an online study. Stimuli were numbers from 1 to 9, and we varied the absolute distance between primes and targets from 0 (i.e., 1-1) to 3 (1-4; as in Reynvoet et al., 2002). The priming distance effect (PDE) was used to measure the strength of numerical semantic association. We find comparable PDEs with Indo-Arabic digits and German number word primes, independently from the target naming language. However, we did not find a clear PDE with French number word primes, neither when naming targets in German, nor in French. The weaker PDE from LM2 compared to LM1 primes is interpreted as a weaker lexico-semantic association of LM2 number words. These results indicate a critical role of the LM1 and further emphasize the role of language in processing numbers. They might have important implications for designing bilingual school curricula. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
LACHELIN, Remy ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
MARINOVA, Mila ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
Reynvoet, Bert; Department of Brain and Cognition, KU Leuven
SCHILTZ, Christine ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Weaker semantic priming effects with number words in the second language of math learning.
Date de publication/diffusion :
21 décembre 2023
Titre du périodique :
Journal of Experimental Psychology: General
ISSN :
0096-3445
eISSN :
1939-2222
Maison d'édition :
American Psychological Association (APA), Etats-Unis
Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128(3), 466–478. https://doi.org/10.1016/j.actpsy.2008.03.014
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
Barth, H., Kanwisher, N., & Spelke, E. (2003). The construction of large number representations in adults. Cognition, 86(3), 201–221. https://doi.org/10.1016/S0010-0277(02)00178-6
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bernardo, A. B. I. (2001). Asymmetric activation of number codes in bilinguals: Further evidence for the encoding complex model of number processing. Memory & Cognition, 29(7), 968–976. https://doi.org/10.3758/BF03195759
Campbell, J. I. D., & Epp, L. J. (2004). An encoding-complex approach to numerical cognition in Chinese–English bilinguals. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 58(4), 229–244. https://doi.org/10.1037/h0087447
Cerda, V. R., Grenier, A. E., & Wicha, N. Y. Y. (2019). Bilingual children access multiplication facts from semantic memory equivalently across languages: Evidence from the N400. Brain and Language, 198, Article 104679. https://doi.org/10.1016/j.bandl.2019.104679
Chincotta, D.,& Underwood, G. (1996). Mother tongue, language of schooling and bilingual digit span. British Journal of Psychology, 87(2), 193–208. https://doi.org/10.1111/j.2044-8295.1996.tb02585.x
Chincotta, D., & Underwood, G. (1997). Speech rate estimates, language of schooling and bilingual digit span. European Journal of Cognitive Psychology, 9(1), 325–348. https://doi.org/10.1080/713752545
Clayton, F. J., Copper, C., Steiner, A. F., Banfi, C., Finke, S., Landerl, K., & Göbel, S. M. (2020). Two-digit number writing and arithmetic in year 1 children: Does number word inversion matter? Cognitive Development, 56, Article 100967. https://doi.org/10.1016/j.cogdev.2020.100967
Colomé, À. (2001). Lexical activation in bilinguals’ speech production: Language-specific or language-independent? Journal of Memory and Language, 45(4), 721–736. https://doi.org/10.1006/jmla.2001.2793
Coltheart,M., Curtis,B., Atkins, P.,&Haller, M. (1993).Models of reading aloud: Dual-route and parallel-distributed-processing approaches. Psychological Review, 100(4), 589–608. https://doi.org/10.1037/0033-295X.100.4.589
Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, 50(4), 491–511. https://doi.org/10.1016/j.jml.2004.02.002
de Groot, A. M. B. (2011). Language and cognition in bilinguals and multilinguals: An introduction. Psychology Press. https://doi.org/10.4324/9780203841228
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42. https://doi.org/10.1016/0010-0277(92)90049-N
Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 43(1), 1–29. https://doi.org/10.1016/0010-0277(92)90030-L
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R.,&Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970–974. https://doi.org/10.1126/science.284.5416.970
Del Maschio, N., & Abutalebi, J. (2019). Language organization in the bilingual and multilingual brain. In J. W. Schwieter & M. Paradis (Eds.), The handbook of the neuroscience of multilingualism (pp. 197–213). John Wiley & Sons. https://doi.org/10.1002/9781119387725.ch9
Desoete, A., Ceulemans, A., DeWeerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002
Dewaele, J.-M. (2007). Multilinguals’ language choice for mental calculation. Intercultural Pragmatics, 4(3), 343–376. https://doi.org/10.1515/IP.2007.017
Dijkstra, T. (2005). Bilingual visual word recognition and lexical access. In J. F. Kroll & A. M. B. de Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 179–201). Oxford University Press. https://doi.org/10.1017/S0272263107210071
Dijkstra, T., & van Heuven,W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175–197. https://doi.org/10.1017/S1366728902003012
Dijkstra, T., Wahl, A., Buytenhuijs, F., Halem, N. V., Al-Jibouri, Z., Korte, M. D., & Rekké, S. (2019). Multilink: A computational model for bilingual word recognition and word translation. Bilingualism: Language and Cognition, 22(4), 657–679. https://doi.org/10.1017/S1366728918000287
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428
Duyck, W., & Brysbaert, M. (2002). What number translation studies can teach us about the lexico-semantic organisation in bilinguals. Psychologica Belgica, 42(3), 151–175. https://doi.org/10.5334/pb.992
Duyck,W.,&Brysbaert, M. (2004). Forward and backward number translation requires conceptual mediation in both balanced and unbalanced bilinguals. Journal of Experimental Psychology: Human Perception and Performance, 30(5), 889–906. https://doi.org/10.1037/0096-1523.30.5.889
Duyck, W., Depestel, I., Fias, W., & Reynvoet, B. (2008). Cross-lingual numerical distance priming with second-language number words in native-to third-language number word translation. Quarterly Journal of Experimental Psychology, 61(9), 1281–1290. https://doi.org/10.1080/17470210802000679
Ellis, A. W., & Lambon Ralph, M. A. (2000). Age of acquisition effects in adult lexical processing reflect loss of plasticity in maturing systems: Insights from connectionist networks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1103–1123. https://doi.org/10.1037/0278-7393.26.5.1103
Ellis, N. C., & Hennelly, R. A. (1980). A bilingual word-length effect: Implications for intelligence testing and the relative ease of mental calculation in Welsh and English. British Journal of Psychology, 71(1), 43–51. https://doi.org/10.1111/j.2044-8295.1980.tb02728.x
Finger, H., Goeke, C., Diekamp, D., Standvoß, K., & König, P. (2017, July 10–13). LabVanced: A unified JavaScript framework for online studies [Conference session]. 2017 International Conference on Computational Social Science IC2S2, Cologne, Germany. https://www.labvanced.com/
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108(3), 819–824. https://doi.org/10.1016/j.cognition.2008.04.007
Garcia, O., Faghihi, N., Raola, A. R., & Vaid, J. (2021). Factors influencing bilinguals’ speed and accuracy of number judgments across languages: A meta-analytic review. Journal of Memory and Language, 118, Article 104211. https://doi.org/10.1016/j.jml.2020.104211
Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798. https://doi.org/10.1177/0956797613516471
Grabner, R. H., Saalbach, H., & Eckstein, D. (2012). Language-switching costs in bilingual mathematics learning. Mind, Brain, and Education, 6(3), 147–155. https://doi.org/10.1111/j.1751-228X.2012.01150.x
Green, D.W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1(2), 67–81. https://doi.org/10.1017/S1366728998000133
Greisen, M., Georges, C., Hornung, C., Sonnleitner, P., & Schiltz, C. (2021). Learning mathematics with shackles: How lower reading comprehension in the language of mathematics instruction accounts for lower mathematics achievement in speakers of different home languages. Acta Psychologica, 221, Article 103456. https://doi.org/10.1016/j.actpsy.2021.103456
Grosjean, F. (2001). The bilingual’s language modes. Blackwell.
Grosjean, F. (2008). Studying bilinguals. Oxford University Press.
Hahn, C. G. K., Saalbach, H., & Grabner, R. H. (2019). Language-dependent knowledge acquisition: Investigating bilingual arithmetic learning. Bilingualism: Language and Cognition, 22(1), 47–57. https://doi.org/10.1017/S1366728917000530
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. https://doi.org/10.1038/nature07246
Hernandez, A. E. (2013). The bilingual brain. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199828111.001.0001
Hirsh, K. W., Morrison, C. M., Gaset, S., & Carnicer, E. (2003). Age of acquisition and speech production in L2. Bilingualism: Language and Cognition, 6(2), 117–128. https://doi.org/10.1017/S136672890300107X
Ifrah, G., & Bellos, D. (2000). The universal history of numbers: From prehistory to the invention of the computer. John Wiley & Sons.
Ivanova, I., & Costa, A. (2008). Does bilingualism hamper lexical access in speech production? Acta Psychologica, 127(2), 277–288. https://doi.org/10.1016/j.actpsy.2007.06.003
Klaus, J., & Schriefers, H. (2019). Bilingual word production. In J. W. Schwieter & M. Paradis (Eds.), The handbook of the neuroscience of multilingualism (pp. 214–229). John Wiley & Sons. https://doi.org/10.1002/9781119387725.ch10
Kochari, A. R. (2019). Conducting web-based experiments for numerical cognition research. Journal of Cognition, 2(1), Article 39. https://doi.org/10.5334/joc.85
Koechlin, E., Naccache, L., Block, E., & Dehaene, S. (1999). Primed numbers: Exploring the modularity of numerical representations with masked and unmasked semantic priming. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1882–1905. https://doi.org/10.1037/0096-1523.25.6.1882
Kovelman, I., Baker, S. A., & Petitto, L.-A. (2008). Age of first bilingual language exposure as a new window into bilingual reading development. Bilingualism: Language and Cognition, 11(2), 203–223. https://doi.org/10.1017/S1366728908003386
Krajcsi, A., Lengyel, G., & Kojouharova, P. (2016). The source of the symbolic numerical distance and size effects. Frontiers in Psychology, 7, Article 1795. https://doi.org/10.3389/fpsyg.2016.01795
Kroll, J. F., Van Hell, J. G., Tokowicz, N., & Green, D. W. (2010). The revised hierarchical model: A critical review and assessment. Bilingualism: Language and Cognition, 13(3), 373–381. https://doi.org/10.1017/S136672891000009X
Lachelin, R., van Rinsveld, A., Poncin, A., & Schiltz, C. (2022). Number transcoding in bilinguals—A transversal developmental study. PLoS One, 17(8), Article e0273391. https://doi.org/10.1371/journal.pone.0273391
Lê, M.-L., & Noël, M.-P. (2021). Preschoolers’ mastery of advanced counting: The best predictor of addition skills 2 years later. Journal of Experimental Child Psychology, 212, Article 105252. https://doi.org/10.1016/j.jecp.2021.105252
Lenth, R. V. (2021). emmeans: Estimated marginal means, aka least-squares means (R package version 1.7.0) [Computer software]. https://CRAN.Rproject.org/package=emmeans
Lin, J.-F. L., Imada, T., & Kuhl, P. K. (2019). Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study. Brain and Cognition, 134, 122–134. https://doi.org/10.1016/j.bandc.2019.03.006
Major, C. S., Paul, J. M., & Reeve, R. A. (2017). TEMA and dot enumeration profiles predict mental addition problem solving speed longitudinally. Frontiers in Psychology, 8, Article 2263. https://doi.org/10.3389/fpsyg.2017.02263
Marian, V.,& Spivey,M. (2003). Competing activation in bilingual language processing: Within- and between-language competition. Bilingualism: Language and Cognition, 6(2), 97–115. https://doi.org/10.1017/S1366728903001068
Marinova, M., Georges, C., Guillaume, M., Reynvoet, B., Schiltz, C., & Van Rinsveld, A. (2021). Automatic integration of numerical formats examined with frequency-tagged EEG. Scientific Reports, 11(1), Article 21405. https://doi.org/10.1038/s41598-021-00738-0
Martinez-Lincoln, A., Cortinas, C., & Wicha, N. Y. Y. (2015). Arithmetic memory networks established in childhood are changed by experience in adulthood. Neuroscience Letters, 584, 325–330. https://doi.org/10.1016/j.neulet.2014.11.010
Martini, S. (2021). The influence of language on mathematics in a multilingual educational setting. University of Luxembourg. Ministère de l’ÉducationNationale. (2022,April 20). Languages in Luxembourg Schools. https://men.public.lu/en/themes-transversaux/langues-ecole-luxembourgeoise.html
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. https://doi.org/10.1038/2151519a0
Naccache, L., Blandin, E.,&Dehaene, S. (2002). Unconscious masked priming depends on temporal attention. Psychological Science, 13(5), 416–424. https://doi.org/10.1111/1467-9280.00474
Naccache, L., & Dehaene, S. (2001). The priming method: Imaging unconscious repetition priming reveals an abstract representation of number in the parietal Lobes. Cerebral Cortex, 11(10), 966–974. https://doi.org/10.1093/cercor/11.10.966
Negen, J., & Sarnecka, B.W. (2009). Young children’s number-word knowledge predicts their performance on a nonlinguistic number task. https://escholarship.org/uc/item/1q03q75z
Negen, J., & Sarnecka, B.W. (2012). Number-concept acquisition and general vocabulary development. Child Development, 83(6), 2019–2027. https://doi.org/10.1111/j.1467-8624.2012.01815.x
Notebaert, K., Pesenti, M., & Reynvoet, B. (2010). The neural origin of the priming distance effect: Distance-dependent recovery of parietal activation using symbolic magnitudes. Human Brain Mapping, 31(5), 669–677. https://doi.org/10.1002/hbm.20896
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503. https://doi.org/10.1126/science.1102085
Pitt, B., Gibson, E., & Piantadosi, S. T. (2022). Exact number concepts are limited to the verbal count range. Psychological Science, 33(3), 371–381. https://doi.org/10.1177/09567976211034502
Protopapas, A. (2007). Check vocal: A program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859–862. https://doi.org/10.3758/BF03192979
Reynvoet, B., & Brysbaert, M. (1999). Single-digit and two-digit Arabic numerals address the same semantic number line. Cognition, 72(2), 191–201. https://doi.org/10.1016/S0010-0277(99)00048-7
Reynvoet, B., Brysbaert, M.,& Fias,W. (2002). Semantic priming in number naming. The Quarterly Journal of Experimental Psychology Section A, 55(4), 1127–1139. https://doi.org/10.1080/02724980244000116
Reynvoet, B., De Smedt, B., & Van den Bussche, E. (2009). Children’s representation of symbolic magnitude: The development of the priming distance effect. Journal of Experimental Child Psychology, 103(4), 480–489. https://doi.org/10.1016/j.jecp.2009.01.007
RStudio Team. (2020). RStudio: Integrated development environment for r (Version 1.3.1093) [Computer software]. https://www.rstudio.com/
Saalbach, H., Eckstein, D., Andri, N., Hobi, R., & Grabner, R. H. (2013). When language of instruction and language of application differ: Cognitive costs of bilingual mathematics learning. Learning and Instruction, 26, 36–44. https://doi.org/10.1016/j.learninstruc.2013.01.002
Salillas, E.,&Wicha, N. Y. Y. (2012). Early learning shapes the memory networks for arithmetic: Evidence from brain potentials in bilinguals. Psychological Science, 23(7), 745–755. https://doi.org/10.1177/0956797612446347
Sasanguie, D., Defever, E., Van den Bussche, E.,&Reynvoet, B. (2011). The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming. Acta Psychologica, 136(1), 73–80. https://doi.org/10.1016/j.actpsy.2010.10.004
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & Smedt, B. D. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A metaanalysis. Developmental Science, 20(3), Article e12372. https://doi.org/10.1111/desc.12372
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). afex: Analysis of factorial experiments. https://CRAN.R-project.org/package=afex
Spaepen, E., Coppola, M., Flaherty, M., Spelke, E., & Goldin-Meadow, S. (2013). Generating a lexicon without a language model: Do words for number count? Journal of Memory and Language, 69(4), 496–505. https://doi.org/10.1016/j.jml.2013.05.004
Spelke, E. S., & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78(1), 45–88. https://doi.org/10.1016/S0010-0277(00)00108-6
Steiner, A. F., Banfi, C., Finke, S., Kemény, F., Clayton, F. J., Göbel, S. M., & Landerl, K. (2021). Twenty-four or four-and-twenty: Language modulates cross-modal matching for multidigit numbers in children and adults. Journal of Experimental Child Psychology, 202, Article 104970. https://doi.org/10.1016/j.jecp.2020.104970
van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17(4), 492–505. https://doi.org/10.1111/desc.12143
Van Rinsveld, A., Brunner, M., Landerl, K., Schiltz, C., & Ugen, S. (2015). The relation between language and arithmetic in bilinguals: Insights from different stages of language acquisition. Frontiers in Psychology, 6, Article 265. https://doi.org/10.3389/fpsyg.2015.00265
Van Rinsveld, A., Dricot, L., Guillaume, M., Rossion, B., & Schiltz, C. (2017). Mental arithmetic in the bilingual brain: Language matters. Neuropsychologia, 101, 17–29. https://doi.org/10.1016/j.neuropsychologia.2017.05.009
Venkatraman, V., Siong, S. C., Chee, M. W. L., & Ansari, D. (2006). Effect of language switching on arithmetic: A bilingual fMRI study. Journal of Cognitive Neuroscience, 18(1), 64–74. https://doi.org/10.1162/089892906775250030
Volmer, E., Grabner, R. H., & Saalbach, H. (2018). Language switching costs in bilingual mathematics learning: Transfer effects and individual differences. Zeitschrift Für Erziehungswissenschaft, 21(1), 71–96. https://doi.org/10.1007/s11618-017-0795-6
Wang, Y., Lin, L., Kuhl, P., & Hirsch, J. (2007). Mathematical and linguistic processing differs between native and second languages: An fMRI study. Brain Imaging and Behavior, 1(3–4), 68–82. https://doi.org/10.1007/s11682-007-9007-y
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://ggplot2.tidyverse.org
Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220–251. https://doi.org/10.1016/0010-0285(92)90008-P
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. https://doi.org/10.1016/S0010-0277(99)00066-9
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131(1), 3–29. https://doi.org/10.1037/0033-2909.131.1.3
Ziegler, J. C., Perry, C., Jacobs, A. M., & Braun, M. (2001). Identical words are read differently in different languages. Psychological Science, 12(5), 379–384. https://doi.org/10.1111/1467-9280.00370