[en] While the central nervous system is considered an immunoprivileged site and brain tumors display immunosuppressive features, both innate and adaptive immune responses affect glioblastoma (GBM) growth and treatment resistance. However, the impact of the major immune cell population in gliomas, represented by glioma-associated microglia/macrophages (GAMs), on patients' clinical course is still unclear. Thus, we aimed at assessing the immunohistochemical expression of selected microglia and macrophage markers in 344 gliomas (including gliomas from WHO grade I-IV). Furthermore, we analyzed a cohort of 241 IDH1R132H-non-mutant GBM patients for association of GAM subtypes and patient overall survival. Phenotypical properties of GAMs, isolated from high-grade astrocytomas by CD11b-based magnetic cell sorting, were analyzed by immunocytochemistry, mRNA microarray, qRT-PCR and bioinformatic analyses. A higher amount of CD68-, CD163- and CD206-positive GAMs in the vital tumor core was associated with beneficial patient survival. The mRNA expression profile of GAMs displayed an upregulation of factors that are considered as pro-inflammatory M1 (eg, CCL2, CCL3L3, CCL4, PTGS2) and anti-inflammatory M2 polarization markers (eg, MRC1, LGMN, CD163, IL10, MSR1), the latter rather being associated with phagocytic functions in the GBM microenvironment. In summary, we present evidence that human GBMs contain mixed M1/M2-like polarized GAMs and that the levels of different GAM subpopulations in the tumor core are positively associated with overall survival of patients with IDH1R132H-non-mutant GBMs.
Disciplines :
Oncology
Author, co-author :
Zeiner, Pia S ; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Preusse, Corinna; Department of Neuropathology, Charité Berlin, Berlin, Germany.
GOLEBIEWSKA, Anna ; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg.
Zinke, Jenny; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Iriondo, Ane; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Muller, Arnaud; Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg.
Kaoma, Tony; Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg.
Filipski, Katharina; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; German Cancer Consortium (DKTK), Heidelberg, Germany. ; German Cancer Research Center (DKFZ), Heidelberg, Germany.
Müller-Eschner, Monika; Institute of Neuroradiology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Bernatz, Simon; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Blank, Anna-Eva; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Baumgarten, Peter; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; Department of Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany.
ILINA, Elena ; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg. ; Luxembourg Centre of Neuropathology (LCNP), Luxembourg.
Grote, Anne; Institute of Pathology and Neuropathology, Medical University Hannover, Hannover, Germany.
Hansmann, Martin L; Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Verhoff, Marcel A; Institute of Legal Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
Franz, Kea; Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; Department of Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany.
Feuerhake, Friedrich; Institute of Pathology and Neuropathology, Medical University Hannover, Hannover, Germany. ; Institute of Neuropathology, University Clinic Freiburg, Freiburg, Germany.
Steinbach, Joachim P; Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; German Cancer Consortium (DKTK), Heidelberg, Germany. ; German Cancer Research Center (DKFZ), Heidelberg, Germany.
Wischhusen, Jörg; Department of Gynecology, University of Wuerzburg, Wuerzburg, Germany.
Stenzel, Werner; Department of Neuropathology, Charité Berlin, Berlin, Germany.
NICLOU, Simone P. ; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg. ; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway.
Harter, Patrick N; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; German Cancer Consortium (DKTK), Heidelberg, Germany. ; German Cancer Research Center (DKFZ), Heidelberg, Germany.
MITTELBRONN, Michel ; Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany. ; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg. ; German Cancer Consortium (DKTK), Heidelberg, Germany. ; German Cancer Research Center (DKFZ), Heidelberg, Germany. ; Luxembourg Centre of Neuropathology (LCNP), Luxembourg. ; Laboratoire national de santé (LNS), Dudelange, Luxembourg.
Baumgarten P, Blank AE, Franz K, Hattingen E, Dunst M, Zeiner P et al (2016) Differential expression of vascular endothelial growth factor A, its receptors VEGFR-1, -2, and -3 and co-receptors neuropilin-1 and -2 does not predict bevacizumab response in human astrocytomas. Neuro Oncol 8:173–183.
Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wöhrer A et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17:1064–1075.
Bougnaud S, Golebiewska A, Oudin A, Keunen O, Harter PN, Mäder L et al (2016) Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget 7:31955–31971.
Brooks WH, Netsky MG, Normansell DE, Horwitz DA (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J Exp Med 136:1631–1647.
Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA et al (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10:99–111.
Burnett GT, Weathersby DC, Taylor TE, Bremner TA (2008) Regulation of inflammation- and angiogenesis-related gene expression in breast cancer cells and co-cultured macrophages. Anticancer Res 28:2093–2099.
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474.
Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W et al (2016) CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 18:807–818.
Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727.
Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13:1472–1479.
Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306.
Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN et al (2016) Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 1:pii: e85841.
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE et al (2014) Classification of current anticancer immunotherapies. Oncotarget 5:12472–12508.
Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945.
Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B (2017) Immune microenvironment of gliomas. Lab Invest 97:498–518. https://doi.org/10.1038/labinvest.2017.19.
Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446.
Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y et al (2014) Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110:2560–2568.
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674.
Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA (2002) Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103:171–178.
Hattermann K, Sebens S, Helm O, Schmitt AD, Mentlein R, Mehdorn HM et al (2014) Chemokine expression profile of freshly isolated human glioblastoma-associated macrophages/microglia. Oncol Rep 32:270–276.
Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W et al (2008) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14:5166–5172.
Kennedy BC, Maier LM, D’Amico R, Mandigo CE, Fontana EJ, Waziri A et al (2009) Dynamics of central and peripheral immunomodulation in a murine glioma model. BMC Immunol 18;10:11.
Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN et al (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013:486912. https://doi.org/10.1155/2013/486912.
Kim YH, Jung TY, Jung S, Jang WY, Moon KS, Kim IY et al (2012) Tumour-infiltrating T-cell subpopulations in glioblastomas. Br J Neurosurg 26:21–27.
Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321.
Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R et al (2011) Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 17:4296–4308.
Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C et al (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141.
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686.
McFarland BC, Hong SW, Rajbhandari R, Twitty GB Jr, Gray GK, Yu H et al (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One 8:e78728.
Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY, Russell L et al (2015) The impact of macrophage- and microglia-secreted TNFα on oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res. 15;21:3274–3285.
Mignogna C, Signorelli F, Vismara MF, Zeppa P, Camastra C, Barni T et al (2016) A reappraisal of macrophage polarization in glioblastoma: histopathological and immunohistochemical findings and review of the literature. Pathol Res Pract 212:491–499.
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173.
Mittelbronn M, Simon P, Löffler C, Capper D, Bunz B, Harter P et al (2007) Elevated HLA-E levels in human glioblastomas but not in grade I to III astrocytomas correlate with infiltrating CD8+ cells. J Neuroimmunol 189:50–58.
Mittelbronn M, Meyermann R (2010) CNS – immune system interplay unter normal and pathological conditions. In: Immune biology of brain tumours, Stavrou DK, Hagel C (eds), Dustri: Oberhaching-Munich.
Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL (1979) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159:4415–4425.
Niclou SP, Danzeisen C, Eikesdal HP, Wiig H, Brons NH, Poli AM et al (2008) A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions. FASEB J 22:3120–3128. https://doi.org/10.1096/fj.08-109611.
Ohno S, Inagawa H, Dhar DK, Fujii T, Ueda S, Tachibana M (2003) The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res 23:5015–5022.
Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S et al (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54:388–392.
Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78. https://doi.org/10.1038/nrc1256.
Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272.
Roesch S, Rapp C, Dettling S, Herold-Mende C (2018) When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci 19(2):E436. https://doi.org/10.3390/ijms19020436.
Roszman TL, Brooks WH (1980) Immunobiology of primary intracranial tumours. III. Demonstration of a qualitative lymphocyte abnormality in patients with primary brain tumours. Clin Exp Immunol 39:395–402.
Selenica ML, Alvarez JA, Nash KR, Lee DC, Cao C, Lin X et al (2013) Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. J Neuroinflammation 10:86. https://doi.org/10.1186/1742-2094-10-86.
Sevenich L (2018) Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol 9:697. https://doi.org/10.3389/fimmu.2018.00697.
Shi Y, Zhou Ping YF, W, He ZC Chen C, Bian BS, et al (2017) Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun 8:15080. https://doi.org/10.1038/ncomms15080.
Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L et al (2010) Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 185:642–652.
Stables MJ, Shah S, Camon EB, Lovering RC, Newson J, Bystrom J et al (2011) Transcriptomic analyses of murine resolution-phase macrophages. Blood 118:e192–e208.
Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1100–1108.
Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T et al (2015) Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 10:e0116644.
Tanaka Y, Sasaki A, Ishiuchi S, Nakazato Y (2008) Diversity of glial cell components in pilocytic astrocytoma. Neuropathology 28:399–407.
Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14:425–431.
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42–56.e6.
Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L et al (2015) MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol 25:491–504.
Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182.